cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 33 results. Next

A263849 Let R = Z[(1+sqrt(5))/2] denote the ring of integers in the real quadratic number field of discriminant 5. Then a(n) is the largest integer k such that every totally positive element nu in R of norm m = A031363(n) can be written as a sum of three squares in R in at least k ways.

Original entry on oeis.org

1, 6, 12, 24, 32, 24, 54, 24, 24, 30, 24, 48, 48, 96, 24, 48, 96, 48, 24, 120, 108, 48, 72, 48, 120, 54, 48, 48, 48, 84, 72, 120, 72, 78, 48, 144, 72, 72, 128, 192, 120, 96, 48, 48, 96, 96, 216, 72, 48, 120, 96, 96, 48, 96, 48, 120, 96, 224, 72, 120, 48, 288, 72, 48, 72, 246, 240, 120, 144
Offset: 0

Views

Author

N. J. A. Sloane, Nov 15 2015

Keywords

Comments

Let R = Z[(1+sqrt{5})/2] denote the ring of integers in the real quadratic number field of discriminant 5. The main result of Maass (1941) is that every totally positive nu in R is a sum of 3 squares x^2+y^2+z^2 with x,y,z in R. The number N_{nu} of such representations is given by the formula in the theorem on page 191. The norms of the totally positive elements nu are rational integers m belonging to A031363, so we can order the terms of the sequence according to the values m = A031363(n). [Comment based on remarks from Gabriele Nebe.]
The terms were computed with the aid of Magma by David Durstoff, Nov 11 2015.
The attached file from David Durstoff gives list of pairs m=A031363(n), a(n), and also the initial terms of Maass's series theta(tau). David Durstoff says: "I expressed theta(tau) in terms of two variables q1 and q2. The coefficient of q1^k q2^m is a(nu) with k = trace(nu/delta) and m = trace(nu), where delta = (5+sqrt{5})/2 is a generator of the different ideal. I computed the terms for q1^0 to q1^10 and all possible powers of q2."
Note that there are examples of totally positive elements x and y in R which have the same norm, but for which the number of ways of writing x as a sum of three squares in R is different to the number of ways of writing y as a sum of three squares in R. E.g. there are 78 ways of writing (27 + 7*sqrt(5))/2 as a sum of three squares in R, and there are 192 ways of writing 11 as a sum of three squares in R, yet both elements have norm 121. The sequence of possible norms for which this can occur is 121, 209, 341, 361, 451, 484, 551, 589, 605, 649, ... - Robin Visser, Mar 28 2025

Examples

			From _Robin Visser_, Mar 30 2025: (Start)
a(1) = 6, as every totally positive element of norm A031363(1)=1 in R can be written as a sum of three squares in R in exactly 6 ways.  E.g. the element 1 in R has norm 1 and can be written as a sum of three squares in R as:
  1 = 1^2 + 0^2 + 0^2 = (-1)^2 + 0^2 + 0^2 = 0^2 + 1^2 + 0^2 = 0^2 + (-1)^2 + 0^2 = 0^2 + 0^2 + 1^2 = 0^2 + 0^2 + (-1)^2.
a(2) = 12, as every totally positive element of norm A031363(2)=4 in R can be written as a sum of three squares in R in exactly 12 ways. E.g. the element 2 in R has norm 4 and can be written as a sum of three squares in R as:
  2 = 1^2 + 1^2 + 0^2 = 1^2 + 0^2 + 1^2 = 0^2 + 1^2 + 1^2 = 1^2 + (-1)^2 + 0^2 = 1^2 + 0^2 + (-1)^2 = 0^2 + 1^2 + (-1)^2 = (-1)^2 + 1^2 + 0^2 = (-1)^2 + 0^2 + 1^2 = 0^2 + (-1)^2 + 1^2 = (-1)^2 + (-1)^2 + 0^2 = (-1)^2 + 0^2 + (-1)^2 = 0^2 + (-1)^2 + (-1)^2.
a(3) = 24, as every totally positive element of norm A031363(3)=5 in R can be written as a sum of three squares in R in exactly 24 ways. E.g. the element (5+sqrt(5))/2 in R has norm 5 and can be written as a sum of three squares in R as:
  (5+sqrt(5))/2 = w^2 + 1^2 + 0^2 = w^2 + 0^2 + 1^2 = 0^2 + w^2 + 1^2 = 1^2 + w^2 + 0^2 = 0^2 + 1^2 + w^2 = 1^2 + 0^2 + w^2 = (-w)^2 + 1^2 + 0^2 = (-w)^2 + 0^2 + 1^2 = 0^2 + (-w)^2 + 1^2 = 1^2 + (-w)^2 + 0^2 = 0^2 + 1^2 + (-w)^2 = 1^2 + 0^2 + (-w)^2 = w^2 + (-1)^2 + 0^2 = w^2 + 0^2 + (-1)^2 = 0^2 + w^2 + (-1)^2 = (-1)^2 + w^2 + 0^2 = 0^2 + (-1)^2 + w^2 = (-1)^2 + 0^2 + w^2 = (-w)^2 + (-1)^2 + 0^2 = (-w)^2 + 0^2 + (-1)^2 = 0^2 + (-w)^2 + (-1)^2 = (-1)^2 + (-w)^2 + 0^2 = 0^2 + (-1)^2 + (-w)^2 = (-1)^2 + 0^2 + (-w)^2, where w = (1+sqrt(5))/2. (End)
		

References

  • Maass, Hans. Über die Darstellung total positiver Zahlen des Körpers R (sqrt(5)) als Summe von drei Quadraten, Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg. Vol. 14. No. 1, pp. 185-191, 1941.

Crossrefs

Cf. A031363 (the norms), A035187 (number of ideals with that norm).
See A263850 for another version of this sequence.
Cf. A005875 (sum of 3 squares in Z), A000118 (sum of 4 squares in Z).

Extensions

More terms from Robin Visser, Mar 28 2025

A038872 Primes congruent to {0, 1, 4} mod 5.

Original entry on oeis.org

5, 11, 19, 29, 31, 41, 59, 61, 71, 79, 89, 101, 109, 131, 139, 149, 151, 179, 181, 191, 199, 211, 229, 239, 241, 251, 269, 271, 281, 311, 331, 349, 359, 379, 389, 401, 409, 419, 421, 431, 439, 449, 461, 479, 491, 499, 509, 521, 541, 569, 571, 599, 601, 619
Offset: 1

Views

Author

Keywords

Comments

Also odd primes p such that 5 is a square mod p: (5/p) = +1 for p > 5.
Primes of the form x^2 + x*y - y^2 (as well as of the form x^2 + 3*x*y + y^2), both with discriminant = 5 and class number = 1. Binary quadratic forms a*x^2 + b*x*y + c*y^2 have discriminant d = b^2 - 4ac and gcd(a, b, c) = 1. [This was originally a separate entry, submitted by Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales, Jun 06 2008. R. J. Mathar proved on Jul 22 2008 that this coincides with the present sequence.]
Also primes of the form 5x^2 - y^2 (cf. A031363). - N. J. A. Sloane, May 30 2014
Also primes of the form x^2 + 4*x*y - y^2. Every binary quadratic primitive form of discriminant 20 or 5 has proper solutions for positive integers N given in A089270, including the present primes. Proof from computing the corresponding representative parallel primitive forms, which leads to x^2 - 5 == 0 (mod N) or x^2 + x - 1 == 0 (mod N) which have solutions precisely for these positive N values, including these primes. - Wolfdieter Lang, Jun 19 2019
For a Pythagorean triple a, b, c, these primes (and 2) are the possible prime factors of 2a + b, |2a - b|, 2b + a, and 2b - a. - J. Lowell, Nov 05 2011
The prime factors of A028387(n^2+3n+1). - Richard R. Forberg, Dec 12 2014
Except for p = 5, these are primes p that divide Fibonacci(p-1). - Dmitry Kamenetsky, Jul 27 2015
Apart from the first term, these are rational primes that decompose in the field Q[sqrt(5)]. For example, 11 = ((7 + sqrt(5))/2)*((7 - sqrt(5))/2), 19 = ((9 + sqrt(5))/2)*((9 - sqrt(5))/2). - Jianing Song, Nov 23 2018
The possible prime factors of x^2 - x - 1. - Charles R Greathouse IV, Mar 18 2022

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory.

Crossrefs

Cf. A038872 (d=5); A038873 (d=8); A068228, A141123 (d=12); A038883 (d=13). A038889 (d=17); A141111, A141112 (d=65).
Cf. A003631 (complement with respect to A000040).

Programs

  • GAP
    Filtered(Concatenation([5],Flat(List([1..140],k->[5*k-1,5*k+1]))),IsPrime); # Muniru A Asiru, Nov 24 2018
  • Magma
    [ p: p in PrimesUpTo(700) | p mod 5 in {0,1,4}]; // Vincenzo Librandi, Aug 21 2012
    
  • Maple
    select(isprime, [5, seq(op([5*k-1,5*k+1]),k=1..1000)]); # Robert Israel, Dec 22 2014
  • Mathematica
    Join[{5}, Select[Prime[Range[4, 100]], Mod[#, 5] == 1 || Mod[#, 5] == 4 &]] (* Alonso del Arte, Nov 27 2011 *)
  • PARI
    forprime(p=2,1e3,if(kronecker(5,p)>=0,print1(p", "))) \\ Charles R Greathouse IV, Jun 16 2011
    

Formula

a(n) = A045468(n-1) for n > 1. - Robert Israel, Dec 22 2014
a(n) ~ 2n*log(n). - Charles R Greathouse IV, Nov 29 2016

Extensions

Corrected and extended by Peter K. Pearson, May 29 2005
Edited by N. J. A. Sloane, Jul 28 2008 at the suggestion of R. J. Mathar

A035187 Sum over divisors d of n of Kronecker symbol (5|d).

Original entry on oeis.org

1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 1, 0, 0, 2, 1, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 2, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 1, 2, 0, 0, 0, 0
Offset: 1

Views

Author

Keywords

Comments

Let tau be the golden ratio (1+sqrt(5))/2; let zetaQ(tau)(s)=sum(1/(Z(tau):a)^s) the Dedekind zeta function where a runs through the nonzero ideals of Z(tau) and where (Z(tau):a) is the norm of a; then zetaQ(tau)(s)=sum(n>=1,a(n)/n^s). - Benoit Cloitre, Dec 29 2002
First occurrence of k beginning at zero, or 0 if not yet known: 2, 1, 11, 121, 209, 14641, 2299, 1771561, 6061, 43681, 278179, 0, 66671, 0, 33659659, 5285401, 187891, 0, 1266749, 0, 8067191, 639533521, 0, 0, 2066801, 0, 0, 36735721, 976130111, 0, 153276629, 0, 7703531, 0, 0, 0, 39269219, 0, 0, 0, 250082921, 0, 0, 0, 0, 0, 0, 0, 84738841, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 454508329, ..., .
If k is prime, the 0 above can be replaced by the smallest p^(k-1) with p a prime == {1,4} (mod 5), which is p=11. This follows from the multiplicative formula. - R. J. Mathar, Apr 02 2011
The terms often equal A001157(n) mod 5; the exceptions are at n = 2299, 3509, 3751, 3971, 4961, 6061, 6479, ... - R. J. Mathar, Apr 02 2011
Coefficients of Dedekind zeta function for the quadratic number field of discriminant 5. See A002324 for formula and Maple code. - N. J. A. Sloane, Mar 22 2022

Examples

			G.f. = x + x^4 + x^5 + x^9 + 2*x^11 + x^16 + 2*x^19 + x^20 + x^25 + 2*x^29 + ...
		

Crossrefs

Cf. A031363 (for indices of nonzero terms), A078428.
Dedekind zeta functions for imaginary quadratic number fields of discriminants -3, -4, -7, -8, -11, -15, -19, -20 are A002324, A002654, A035182, A002325, A035179, A035175, A035171, A035170, respectively.
Dedekind zeta functions for real quadratic number fields of discriminants 5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 40 are A035187, A035185, A035194, A035195, A035199, A035203, A035188, A035210, A035211, A035215, A035219, A035192, respectively.

Programs

  • Maple
    A035187 := proc(n) local f,p; f := ifactors(n)[2] ; if nops(f) = 1 then p := op(1,f) ; if op(1,p) = 5 then 1; elif op(1,p) mod 5 in {1,4} then op(2,p)+1 ; else (1+(-1)^op(2,p))/2 ; end if; else mul(procname(op(1,p)^op(2,p) ),p=f) ; end if;
    end proc: # R. J. Mathar, Apr 02 2011
  • Mathematica
    f[n_] := Plus @@ (KroneckerSymbol[5, #] & /@ Divisors@ n); Array[f, 105] (* Robert G. Wilson v *)
    a[ n_] := If[ n < 1, 0, DivisorSum[ n, KroneckerSymbol[ 5, #] &]]; (* Michael Somos, Jun 12 2014 *)
  • PARI
    {a(n) = if( n<1, 0, direuler( p=2, n, 1 / (1 - X) / (1 - kronecker( 5, p) * X))[n])}; \\ Michael Somos, Jun 06 2005
    
  • PARI
    {a(n) = local(A, p, e); if( n<1, 0, A = factor(n); prod( k=1, matsize(A)[1], if( p = A[k,1], e = A[k,2]; if( p==5, 1, if((p%5==1) || (p%5==4), e+1, !(e%2))))))}; \\ Michael Somos, Jun 06 2005
    
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, kronecker( 5, d) ) )}; \\ Michael Somos, Oct 29 2005

Formula

Dirichlet g.f.: Product_p ( (1 - p^(-s)) (1 - Kronecker( 5, p)*p^(-s)) )^(-1).
Sum_{k=1..n} a(k) is asymptotic to c*n where c=2*log(tau)/sqrt(5) (A086466).
Multiplicative with a(5^e) = 1, a(p^e) = e+1 if p == 1, 4 (mod 5), a(p^e) = (1+(-1)^e)/2 if p == 2, 3 (mod 5). - Michael Somos, Jun 06 2005
Moebius transform is period 5 sequence A080891. - Michael Somos, Oct 29 2005
q-series for a(n): Sum_{n >= 1} -(-1)^nq^(n(n+1)/2)(1-q)(1-q^2)...(1-q^(n-1))/((1-q^(n+1))(1-q^(n+2))...(1-q^(2n))). - Jeremy Lovejoy, Jun 12 2009

A084917 Positive numbers of the form 3*y^2 - x^2.

Original entry on oeis.org

2, 3, 8, 11, 12, 18, 23, 26, 27, 32, 39, 44, 47, 48, 50, 59, 66, 71, 72, 74, 75, 83, 92, 98, 99, 104, 107, 108, 111, 122, 128, 131, 138, 143, 146, 147, 156, 162, 167, 176, 179, 183, 188, 191, 192, 194, 200, 207, 218, 219, 227, 234, 236, 239, 242, 243, 251, 263, 264, 275, 282, 284
Offset: 1

Views

Author

Roger Cuculière, Jul 14 2003

Keywords

Comments

Positive integers k such that x^2 - 4xy + y^2 + k = 0 has integer solutions. (See the CROSSREFS section for sequences relating to solutions for particular k.)
Comments on method used, from Colin Barker, Jun 06 2014: (Start)
In general, we want to find the values of f, from 1 to 400 say, for which x^2 + bxy + y^2 + f = 0 has integer solutions for a given b.
In order to solve x^2 + bxy + y^2 + f = 0 we can solve the Pellian equation x^2 - Dy^2 = N, where D = b*b - 4 and N = 4*(b*b - 4)*f.
But since sqrt(D) < N, the classical method of solving x^2 - Dy^2 = N does not work. So I implemented the method described in the 1998 sci.math reference, which says:
"There are several methods for solving the Pellian equation when |N| > sqrt(d). One is to use a brute-force search. If N < 0 then search on y = sqrt(abs(n/d)) to sqrt((abs(n)(x1 + 1))/(2d)) and if N > 0 search on y = 0 to sqrt((n(x1 - 1))/(2d)) where (x1, y1) is the minimum positive solution (x, y) to x^2 - dy^2 = 1. If N < 0, for each positive (x, y) found by the search, also take (-x, y). If N > 0, also take (x, -y). In either case, all positive solutions are generated from these using (x1, y1) in the standard way."
Incidentally all my Pell code is written in B-Prolog, and is somewhat voluminous. (End)
Also, positive integers of the form -x^2 + 2xy + 2y^2 of discriminant 12. - N. J. A. Sloane, May 31 2014 [Corrected by Klaus Purath, May 07 2023]
The equivalent sequence for x^2 - 3xy + y^2 + k = 0 is A031363.
The equivalent sequence for x^2 - 5xy + y^2 + k = 0 is A237351.
A positive k does not appear in this sequence if and only if there is no integer solution of x^2 - 3*y^2 = -k with (i) 0 < y^2 <= k/2 and (ii) 0 <= x^2 <= k/2. See the Nagell reference Theorems 108 a and 109, pp. 206-7, with D = 3, N = k and (x_1,y_1) = (2,1). - Wolfdieter Lang, Jan 09 2015
From Klaus Purath, May 07 2023: (Start)
There are no squares in this sequence. Products of an odd number of terms as well as products of an odd number of terms and any terms of A014209 belong to the sequence.
Products of an even number of terms are terms of A014209. The union of this sequence and A014209 is closed under multiplication.
A positive number belongs to this sequence if and only if it contains an odd number of prime factors congruent to {2, 3, 11} modulo 12. If it contains prime factors congruent to {5, 7} modulo 12, these occur only with even exponents. (End)
From Klaus Purath, Jul 09 2023: (Start)
Any term of the sequence raised to an odd power also belongs to the sequence. Proof: t^(2n+1) = t*t^2n = (3*x^2 - y^2)*t^2n = 3*(x*t^n)^2 - (y*t^n)^2. It seems that t^(2n+1) occurs only if t also is in the sequence.
Joerg Arndt has proved that there are no squares in this sequence: Assume s^2 = 3*y^2 - x^2, then s^2 + x^2 = 3 * y^2, but the sum of two squares cannot be 3 * y^2, qed. (End)
That products of any 3 terms belong to the sequence can be proved by the following identity: (na^2 - b^2) (nc^2 - d^2) (ne^2 - f^2) = n[a(nce + df) + b(cf + de)]^2 - [na(cf + de) + b(nce + df)]^2. This can be verified by expanding both sides of the equation. - Klaus Purath, Jul 14 2023

Examples

			11 is in the sequence because 3 * 3^2 - 4^2 = 27 - 16 = 11.
12 is in the sequence because 3 * 4^2 - 6^2 = 48 - 36 = 12.
13 is not in the sequence because there is no solution in integers to 3y^2 - x^2 = 13.
From _Wolfdieter Lang_, Jan 09 2015: (Start)
Referring to the Jan 09 2015 comment above.
k = 1 is out because there is no integer solution of (i) 0 < y^2 <= 1/2.
For k = 4, 5, 6, and 7 one has y = 1, x = 0, 1 (and the negative of this). But x^2 - 3 is not -k for these k and x values. Therefore, these k values are missing.
For k = 8 .. 16 one has y = 1, 2 and x = 0, 1, 2. Only y = 2 has a chance and only for k = 8, 11 and 12 the x value 2, 1 and 0, respectively, solves x^2 - 12 = -k. Therefore 9, 10, 13, 14, 15, 16 are missing.
... (End)
		

References

  • T. Nagell, Introduction to Number Theory, Chelsea Publishing Company, New York, 1964.

Crossrefs

With respect to solutions of the equation in the early comment, see comments etc. in: A001835 (k = 2), A001075 (k = 3), A237250 (k = 11), A003500 (k = 12), A082841 (k = 18), A077238 (k = 39).
A141123 gives the primes.
For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.

Programs

  • Mathematica
    r[n_] := Reduce[n == 3*y^2 - x^2 && x > 0 && y > 0, {x, y}, Integers]; Reap[For[n = 1, n <= 1000, n++, rn = r[n]; If[rn =!= False, Print["n = ", n, ", ", rn /. C[1] -> 1 // Simplify]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Jan 21 2016 *)
    Select[Range[300],Length[FindInstance[3y^2-x^2==#,{x,y},Integers]]>0&] (* Harvey P. Dale, Apr 23 2023 *)

Extensions

Terms 26 and beyond from Colin Barker, Feb 06 2014

A237606 Positive integers k such that x^2 - 8xy + y^2 + k = 0 has integer solutions.

Original entry on oeis.org

6, 11, 14, 15, 24, 35, 44, 51, 54, 56, 59, 60, 71, 86, 96, 99, 110, 119, 126, 131, 134, 135, 140, 150, 159, 176, 179, 191, 204, 206, 215, 216, 224, 231, 236, 239, 240, 251, 254, 275, 284, 294, 311, 315, 326, 335, 339, 344, 350, 359, 366, 371, 374, 375, 384
Offset: 1

Views

Author

Colin Barker, Feb 10 2014

Keywords

Comments

From Klaus Purath, Feb 17 2024: (Start)
Positive numbers of the form 15x^2 - y^2. The reduced form is -x^2 + 6xy + 6y^2.
Even powers of terms as well as products of an even number of terms belong to A243188. This can be proved with respect to the forms [a,0,-c] and [a, 0, +c] by the following identities: (au^2 - cv^2)(ax^2 - cy^2) = (aux + cvy)^2 - ac(uy + vx)^2 and (au^2 + cv^2)(ax^2 + cy^2) = (aux - cvy)^2 + ac(uy + vx)^2 for all a, c, u, v, x, y in R. This can be verified by expanding both sides of the equations. Generalization (conjecture): This multiplication rule applies to all sequences represented by any binary quadratic form [a, b, c].
Odd powers of terms as well as products of an odd number of terms belong to the sequence. This can be proved with respect to the forms [a,0,-c] and [a, 0, +c] by the following identities: (as^2 - ct^2)(au^2 - cv^2)(ax^2 - cy^2) = a[s(aux + cvy) + ct(uy + vx)]^2 - c[as(uy + vx) + t(aux + cvy)]^2 and (as^2 + ct^2)(au^2 + cv^2)(ax^2 + cy^2) = a[s(aux - cvy) - ct(uy + vx)]^2 + c[as(uy + vx) + t(aux - cvy)]^2 for all a, c, s, t, u, v, x, y in R. This can be verified by expanding both sides of the equations. Generalization (conjecture): This multiplication rule applies to all sequences represented by any binary quadratic form [a, b, c].
If we denote any term of this sequence by B and correspondingly of A243189 by C and of A243190 by D, then B*C = D, C*D = B and B*D = C. This can be proved by the following identities, where the sequence (B) is represented by [kn, 0, -1], (C) by [n, 0, -k] and (D) by [k, 0, -n].
Proof of B*C = D: (knu^2 - v^2)(nx^2 - ky^2) = k(nux + vy)^2 - n(kuy + vx)^2 for k, n, u, v, x, y in R.
Proof of C*D = B: (nu^2 - kv^2)(kx^2 - ny^2) = kn(ux + vy)^2 - (nuy + kvx)^2 for k, n, u, v, x, y in R.
Proof of B*D = C: (knu^2 - v^2)(kx^2 - ny^2) = n(kux + vy)^2 - k(nuy + vx)^2 for k, n, u, v, x, y in R. This can be verified by expanding both sides of the equations.
Generalization (conjecture): If there are three sequences of a given positive discriminant that are represented by the forms [a1, b1, c1], [a2, b2, c2] and [a1*a2, b3, c3] for a1, a2 != 1, then the BCD rules apply to these sequences. (End)

Examples

			6 is in the sequence because x^2 - 8xy + y^2 + 6 = 0 has integer solutions, for example (x, y) = (1, 7).
		

Crossrefs

Cf. A070997 (k = 6), A199336 (k = 14), A001091 (k = 15), A077248 (k = 35).
For primes see A141302.
Cf. A378710, A378711 (subsequence of properly represented numbers and fundamental solutions).

A237351 Positive integers k such that x^2 - 5xy + y^2 + k = 0 has integer solutions.

Original entry on oeis.org

3, 5, 12, 17, 20, 21, 27, 35, 41, 45, 47, 48, 59, 68, 75, 80, 83, 84, 89, 101, 108, 111, 119, 125, 129, 131, 140, 147, 153, 164, 167, 173, 180, 185, 188, 189, 192, 201, 215, 227, 236, 237, 243, 245, 251, 255, 257, 269, 272, 287, 293, 300, 311, 315, 320, 327
Offset: 1

Views

Author

Colin Barker, Feb 06 2014

Keywords

Comments

See comments on method used in A084917.
The equivalent sequence for x^2 - 3xy + y^2 + k = 0 is A031363.
The equivalent sequence for x^2 - 4xy + y^2 + k = 0 is A084917.
Positive numbers of the form 3x^2 - 7y^2. - Jon E. Schoenfield, Jun 03 2022

Examples

			12 is in the sequence because x^2 - 5xy + y^2 + 12 = 0 has integer solutions, for example, (x, y) = (2, 8).
		

Crossrefs

Cf. A004253 (k = 3), A237254 (k = 5), A237255 (k = 17).
For primes see A141160.

Programs

  • Mathematica
    Select[Range[350],Length[FindInstance[x^2-5x y+y^2+#==0,{x,y},Integers]]>0&] (* Harvey P. Dale, Apr 23 2023 *)

A237599 Positive integers k such that x^2 - 6xy + y^2 + k = 0 has integer solutions.

Original entry on oeis.org

4, 7, 8, 16, 23, 28, 31, 32, 36, 47, 56, 63, 64, 68, 71, 72, 79, 92, 100, 103, 112, 119, 124, 127, 128, 136, 144, 151, 164, 167, 175, 184, 188, 191, 196, 199, 200, 207, 223, 224, 239, 248, 252, 256, 263, 271, 272, 279, 284, 287, 288, 292, 311, 316, 324, 328
Offset: 1

Views

Author

Colin Barker, Feb 10 2014

Keywords

Comments

Nonnegative numbers of the form 8x^2 - y^2. - Jon E. Schoenfield, Jun 03 2022

Examples

			4 is in the sequence because x^2 - 6xy + y^2 + 4 = 0 has integer solutions, for example (x, y) = (1, 5).
		

Crossrefs

Cf. A001653 (k = 4), A006452 (k = 7), A001541 (k = 8), A075870 (k = 16), A156066 (k = 23), A217975 (k = 28), A003499 (k = 32), A075841 (k = 36), A077443 (k = 56).
For primes see A007522 and A141175.
For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.

A237609 Positive integers k such that x^2 - 9xy + y^2 + k = 0 has integer solutions.

Original entry on oeis.org

7, 13, 17, 19, 28, 41, 52, 61, 63, 68, 73, 76, 77, 83, 101, 112, 117, 131, 139, 143, 153, 161, 164, 167, 171, 173, 175, 187, 208, 209, 227, 241, 244, 252, 259, 271, 272, 283, 292, 293, 299, 304, 307, 308, 325, 332, 343, 349, 369, 371, 391, 404, 409, 425, 437
Offset: 1

Views

Author

Colin Barker, Feb 10 2014

Keywords

Examples

			7 is in the sequence because x^2 - 9xy + y^2 + 7 = 0 has integer solutions, for example (x, y) = (1, 8).
		

Crossrefs

Programs

  • PARI
    is(n)=bnfisintnorm(bnfinit(x^2-9*x+1),-n) \\ Ralf Stephan, Feb 11 2014

A237610 Positive integers k such that x^2 - 10xy + y^2 + k = 0 has integer solutions.

Original entry on oeis.org

8, 15, 20, 23, 24, 32, 47, 60, 71, 72, 80, 87, 92, 95, 96, 116, 128, 135, 152, 159, 167, 180, 188, 191, 200, 207, 212, 215, 216, 239, 240, 263, 276, 284, 288, 303, 311, 320, 335, 344, 348, 359, 368, 375, 380, 383, 384, 392, 404, 423, 431, 447, 456, 464, 479
Offset: 1

Views

Author

Colin Barker, Feb 10 2014

Keywords

Examples

			15 is in the sequence because x^2 - 10xy + y^2 + 15 = 0 has integer solutions, for example (x, y) = (2, 19).
		

Crossrefs

Cf. A072256 (k = 8), A129445 (k = 15), A080806 (k = 20), A074061 (k = 23), A001079 (k = 24).

Programs

  • PARI
    is(n)=m=bnfisintnorm(bnfinit(x^2-10*x+1),-n);#m>0&&denominator(polcoeff(m[1],1))==1 \\ Ralf Stephan, Feb 11 2014

A084916 Positive numbers of the form k = x^2 - 3*y^2.

Original entry on oeis.org

1, 4, 6, 9, 13, 16, 22, 24, 25, 33, 36, 37, 46, 49, 52, 54, 61, 64, 69, 73, 78, 81, 88, 94, 96, 97, 100, 109, 117, 118, 121, 132, 141, 142, 144, 148, 150, 157, 166, 169, 177, 181, 184, 193, 196, 198, 208, 213, 214, 216, 222, 225, 229, 241, 244, 249, 253, 256
Offset: 1

Views

Author

Roger Cuculière, Jul 14 2003

Keywords

Comments

Equivalently, positive numbers of the form k = x^2 + 2xy - 2y^2. These are equivalent forms, of discriminant 12.
Also numbers representable as x^2 + 4*x*y + y^2 with 0 <= x <= y. - Gheorghe Coserea, Jul 29 2018 [The restriction 0 <= x <= y is not necessary. - Klaus Purath, Feb 05 2023]
From Klaus Purath, Feb 05 2023: (Start)
Also positive numbers of the form x^2 + 2*m*x*y + (m^2 - 3)*y^2. This includes all forms given above so far.
All terms are congruent to {0, 1, 4, 6, 9, 10} modulo 12.
The product of any two terms belongs to the sequence - (empirically secured up to a(k)*a(m) for 2 <= k, m <= 85). Thus it appears that this sequence is closed under multiplication. Perhaps someone can find a proof? (End)

Crossrefs

Cf. A031363, A035251, A243655 (primitive representations).
See A068228 for primes.

Programs

  • Mathematica
    Reap[For[n = 1, n < 300, n++, If[Reduce[n == x^2 - 3*y^2, {x, y}, Integers] =!= False, Sow[n]]]][[2, 1]] (* Jean-François Alcover, Dec 03 2013 *)

Extensions

More terms from Reinhard Zumkeller, Jul 17 2003
Showing 1-10 of 33 results. Next