cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A084917 Positive numbers of the form 3*y^2 - x^2.

Original entry on oeis.org

2, 3, 8, 11, 12, 18, 23, 26, 27, 32, 39, 44, 47, 48, 50, 59, 66, 71, 72, 74, 75, 83, 92, 98, 99, 104, 107, 108, 111, 122, 128, 131, 138, 143, 146, 147, 156, 162, 167, 176, 179, 183, 188, 191, 192, 194, 200, 207, 218, 219, 227, 234, 236, 239, 242, 243, 251, 263, 264, 275, 282, 284
Offset: 1

Views

Author

Roger Cuculière, Jul 14 2003

Keywords

Comments

Positive integers k such that x^2 - 4xy + y^2 + k = 0 has integer solutions. (See the CROSSREFS section for sequences relating to solutions for particular k.)
Comments on method used, from Colin Barker, Jun 06 2014: (Start)
In general, we want to find the values of f, from 1 to 400 say, for which x^2 + bxy + y^2 + f = 0 has integer solutions for a given b.
In order to solve x^2 + bxy + y^2 + f = 0 we can solve the Pellian equation x^2 - Dy^2 = N, where D = b*b - 4 and N = 4*(b*b - 4)*f.
But since sqrt(D) < N, the classical method of solving x^2 - Dy^2 = N does not work. So I implemented the method described in the 1998 sci.math reference, which says:
"There are several methods for solving the Pellian equation when |N| > sqrt(d). One is to use a brute-force search. If N < 0 then search on y = sqrt(abs(n/d)) to sqrt((abs(n)(x1 + 1))/(2d)) and if N > 0 search on y = 0 to sqrt((n(x1 - 1))/(2d)) where (x1, y1) is the minimum positive solution (x, y) to x^2 - dy^2 = 1. If N < 0, for each positive (x, y) found by the search, also take (-x, y). If N > 0, also take (x, -y). In either case, all positive solutions are generated from these using (x1, y1) in the standard way."
Incidentally all my Pell code is written in B-Prolog, and is somewhat voluminous. (End)
Also, positive integers of the form -x^2 + 2xy + 2y^2 of discriminant 12. - N. J. A. Sloane, May 31 2014 [Corrected by Klaus Purath, May 07 2023]
The equivalent sequence for x^2 - 3xy + y^2 + k = 0 is A031363.
The equivalent sequence for x^2 - 5xy + y^2 + k = 0 is A237351.
A positive k does not appear in this sequence if and only if there is no integer solution of x^2 - 3*y^2 = -k with (i) 0 < y^2 <= k/2 and (ii) 0 <= x^2 <= k/2. See the Nagell reference Theorems 108 a and 109, pp. 206-7, with D = 3, N = k and (x_1,y_1) = (2,1). - Wolfdieter Lang, Jan 09 2015
From Klaus Purath, May 07 2023: (Start)
There are no squares in this sequence. Products of an odd number of terms as well as products of an odd number of terms and any terms of A014209 belong to the sequence.
Products of an even number of terms are terms of A014209. The union of this sequence and A014209 is closed under multiplication.
A positive number belongs to this sequence if and only if it contains an odd number of prime factors congruent to {2, 3, 11} modulo 12. If it contains prime factors congruent to {5, 7} modulo 12, these occur only with even exponents. (End)
From Klaus Purath, Jul 09 2023: (Start)
Any term of the sequence raised to an odd power also belongs to the sequence. Proof: t^(2n+1) = t*t^2n = (3*x^2 - y^2)*t^2n = 3*(x*t^n)^2 - (y*t^n)^2. It seems that t^(2n+1) occurs only if t also is in the sequence.
Joerg Arndt has proved that there are no squares in this sequence: Assume s^2 = 3*y^2 - x^2, then s^2 + x^2 = 3 * y^2, but the sum of two squares cannot be 3 * y^2, qed. (End)
That products of any 3 terms belong to the sequence can be proved by the following identity: (na^2 - b^2) (nc^2 - d^2) (ne^2 - f^2) = n[a(nce + df) + b(cf + de)]^2 - [na(cf + de) + b(nce + df)]^2. This can be verified by expanding both sides of the equation. - Klaus Purath, Jul 14 2023

Examples

			11 is in the sequence because 3 * 3^2 - 4^2 = 27 - 16 = 11.
12 is in the sequence because 3 * 4^2 - 6^2 = 48 - 36 = 12.
13 is not in the sequence because there is no solution in integers to 3y^2 - x^2 = 13.
From _Wolfdieter Lang_, Jan 09 2015: (Start)
Referring to the Jan 09 2015 comment above.
k = 1 is out because there is no integer solution of (i) 0 < y^2 <= 1/2.
For k = 4, 5, 6, and 7 one has y = 1, x = 0, 1 (and the negative of this). But x^2 - 3 is not -k for these k and x values. Therefore, these k values are missing.
For k = 8 .. 16 one has y = 1, 2 and x = 0, 1, 2. Only y = 2 has a chance and only for k = 8, 11 and 12 the x value 2, 1 and 0, respectively, solves x^2 - 12 = -k. Therefore 9, 10, 13, 14, 15, 16 are missing.
... (End)
		

References

  • T. Nagell, Introduction to Number Theory, Chelsea Publishing Company, New York, 1964.

Crossrefs

With respect to solutions of the equation in the early comment, see comments etc. in: A001835 (k = 2), A001075 (k = 3), A237250 (k = 11), A003500 (k = 12), A082841 (k = 18), A077238 (k = 39).
A141123 gives the primes.
For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.

Programs

  • Mathematica
    r[n_] := Reduce[n == 3*y^2 - x^2 && x > 0 && y > 0, {x, y}, Integers]; Reap[For[n = 1, n <= 1000, n++, rn = r[n]; If[rn =!= False, Print["n = ", n, ", ", rn /. C[1] -> 1 // Simplify]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Jan 21 2016 *)
    Select[Range[300],Length[FindInstance[3y^2-x^2==#,{x,y},Integers]]>0&] (* Harvey P. Dale, Apr 23 2023 *)

Extensions

Terms 26 and beyond from Colin Barker, Feb 06 2014

A237606 Positive integers k such that x^2 - 8xy + y^2 + k = 0 has integer solutions.

Original entry on oeis.org

6, 11, 14, 15, 24, 35, 44, 51, 54, 56, 59, 60, 71, 86, 96, 99, 110, 119, 126, 131, 134, 135, 140, 150, 159, 176, 179, 191, 204, 206, 215, 216, 224, 231, 236, 239, 240, 251, 254, 275, 284, 294, 311, 315, 326, 335, 339, 344, 350, 359, 366, 371, 374, 375, 384
Offset: 1

Views

Author

Colin Barker, Feb 10 2014

Keywords

Comments

From Klaus Purath, Feb 17 2024: (Start)
Positive numbers of the form 15x^2 - y^2. The reduced form is -x^2 + 6xy + 6y^2.
Even powers of terms as well as products of an even number of terms belong to A243188. This can be proved with respect to the forms [a,0,-c] and [a, 0, +c] by the following identities: (au^2 - cv^2)(ax^2 - cy^2) = (aux + cvy)^2 - ac(uy + vx)^2 and (au^2 + cv^2)(ax^2 + cy^2) = (aux - cvy)^2 + ac(uy + vx)^2 for all a, c, u, v, x, y in R. This can be verified by expanding both sides of the equations. Generalization (conjecture): This multiplication rule applies to all sequences represented by any binary quadratic form [a, b, c].
Odd powers of terms as well as products of an odd number of terms belong to the sequence. This can be proved with respect to the forms [a,0,-c] and [a, 0, +c] by the following identities: (as^2 - ct^2)(au^2 - cv^2)(ax^2 - cy^2) = a[s(aux + cvy) + ct(uy + vx)]^2 - c[as(uy + vx) + t(aux + cvy)]^2 and (as^2 + ct^2)(au^2 + cv^2)(ax^2 + cy^2) = a[s(aux - cvy) - ct(uy + vx)]^2 + c[as(uy + vx) + t(aux - cvy)]^2 for all a, c, s, t, u, v, x, y in R. This can be verified by expanding both sides of the equations. Generalization (conjecture): This multiplication rule applies to all sequences represented by any binary quadratic form [a, b, c].
If we denote any term of this sequence by B and correspondingly of A243189 by C and of A243190 by D, then B*C = D, C*D = B and B*D = C. This can be proved by the following identities, where the sequence (B) is represented by [kn, 0, -1], (C) by [n, 0, -k] and (D) by [k, 0, -n].
Proof of B*C = D: (knu^2 - v^2)(nx^2 - ky^2) = k(nux + vy)^2 - n(kuy + vx)^2 for k, n, u, v, x, y in R.
Proof of C*D = B: (nu^2 - kv^2)(kx^2 - ny^2) = kn(ux + vy)^2 - (nuy + kvx)^2 for k, n, u, v, x, y in R.
Proof of B*D = C: (knu^2 - v^2)(kx^2 - ny^2) = n(kux + vy)^2 - k(nuy + vx)^2 for k, n, u, v, x, y in R. This can be verified by expanding both sides of the equations.
Generalization (conjecture): If there are three sequences of a given positive discriminant that are represented by the forms [a1, b1, c1], [a2, b2, c2] and [a1*a2, b3, c3] for a1, a2 != 1, then the BCD rules apply to these sequences. (End)

Examples

			6 is in the sequence because x^2 - 8xy + y^2 + 6 = 0 has integer solutions, for example (x, y) = (1, 7).
		

Crossrefs

Cf. A070997 (k = 6), A199336 (k = 14), A001091 (k = 15), A077248 (k = 35).
For primes see A141302.
Cf. A378710, A378711 (subsequence of properly represented numbers and fundamental solutions).

A237599 Positive integers k such that x^2 - 6xy + y^2 + k = 0 has integer solutions.

Original entry on oeis.org

4, 7, 8, 16, 23, 28, 31, 32, 36, 47, 56, 63, 64, 68, 71, 72, 79, 92, 100, 103, 112, 119, 124, 127, 128, 136, 144, 151, 164, 167, 175, 184, 188, 191, 196, 199, 200, 207, 223, 224, 239, 248, 252, 256, 263, 271, 272, 279, 284, 287, 288, 292, 311, 316, 324, 328
Offset: 1

Views

Author

Colin Barker, Feb 10 2014

Keywords

Comments

Nonnegative numbers of the form 8x^2 - y^2. - Jon E. Schoenfield, Jun 03 2022

Examples

			4 is in the sequence because x^2 - 6xy + y^2 + 4 = 0 has integer solutions, for example (x, y) = (1, 5).
		

Crossrefs

Cf. A001653 (k = 4), A006452 (k = 7), A001541 (k = 8), A075870 (k = 16), A156066 (k = 23), A217975 (k = 28), A003499 (k = 32), A075841 (k = 36), A077443 (k = 56).
For primes see A007522 and A141175.
For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.

A237609 Positive integers k such that x^2 - 9xy + y^2 + k = 0 has integer solutions.

Original entry on oeis.org

7, 13, 17, 19, 28, 41, 52, 61, 63, 68, 73, 76, 77, 83, 101, 112, 117, 131, 139, 143, 153, 161, 164, 167, 171, 173, 175, 187, 208, 209, 227, 241, 244, 252, 259, 271, 272, 283, 292, 293, 299, 304, 307, 308, 325, 332, 343, 349, 369, 371, 391, 404, 409, 425, 437
Offset: 1

Views

Author

Colin Barker, Feb 10 2014

Keywords

Examples

			7 is in the sequence because x^2 - 9xy + y^2 + 7 = 0 has integer solutions, for example (x, y) = (1, 8).
		

Crossrefs

Programs

  • PARI
    is(n)=bnfisintnorm(bnfinit(x^2-9*x+1),-n) \\ Ralf Stephan, Feb 11 2014

A237610 Positive integers k such that x^2 - 10xy + y^2 + k = 0 has integer solutions.

Original entry on oeis.org

8, 15, 20, 23, 24, 32, 47, 60, 71, 72, 80, 87, 92, 95, 96, 116, 128, 135, 152, 159, 167, 180, 188, 191, 200, 207, 212, 215, 216, 239, 240, 263, 276, 284, 288, 303, 311, 320, 335, 344, 348, 359, 368, 375, 380, 383, 384, 392, 404, 423, 431, 447, 456, 464, 479
Offset: 1

Views

Author

Colin Barker, Feb 10 2014

Keywords

Examples

			15 is in the sequence because x^2 - 10xy + y^2 + 15 = 0 has integer solutions, for example (x, y) = (2, 19).
		

Crossrefs

Cf. A072256 (k = 8), A129445 (k = 15), A080806 (k = 20), A074061 (k = 23), A001079 (k = 24).

Programs

  • PARI
    is(n)=m=bnfisintnorm(bnfinit(x^2-10*x+1),-n);#m>0&&denominator(polcoeff(m[1],1))==1 \\ Ralf Stephan, Feb 11 2014

A141160 Primes of the form -x^2 + 3*x*y + 3*y^2 (as well as of the form 5*x^2 + 9*x*y + 3*y^2).

Original entry on oeis.org

3, 5, 17, 41, 47, 59, 83, 89, 101, 131, 167, 173, 227, 251, 257, 269, 293, 311, 353, 383, 419, 461, 467, 479, 503, 509, 521, 563, 587, 593, 647, 677, 719, 761, 773, 797, 839, 857, 881, 887, 929, 941, 971, 983, 1013, 1049, 1091, 1097, 1109, 1151, 1181, 1193
Offset: 1

Views

Author

Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (marcanmar(AT)alum.us.es), Jun 12 2008

Keywords

Comments

Discriminant = 21. Class number = 2. Binary quadratic forms a*x^2 + b*x*y + c*y^2 have discriminant d = b^2 - 4ac and gcd(a,b,c) = 1 (primitive).
Except a(1) = 3, primes congruent to {5, 17, 20} mod 21. - Vincenzo Librandi, Jul 11 2018
The comment above is true since the binary quadratic forms with discriminant 21 are in two classes as well as two genera, so there is one class in each genus. A141159 is in the other genus, with primes = 7 or congruent to {1, 4, 16} mod 21. - Jianing Song, Jul 12 2018
4*a(n) can be written in the form 21*w^2 - z^2. - Bruno Berselli, Jul 13 2018
Both forms [-1, 3, 3] (reduced) and [5, 9, 3] (not reduced) are properly (via a determinant +1 matrix) equivalent to the reduced form [3, 3, -1], a member of the 2-cycle [[3, 3, -1], [-1, 3, 3]]. The other reduced form is the principal form [1, 3, -3], with 2-cycle [[1, 3, -3], [-3, 3, 1]] (see, e.g., A141159, A139492). - Wolfdieter Lang, Jun 24 2019

Examples

			a(3)=17 because we can write 17 = -1^2 + 3*1*2 + 3*2^2 (or 17 = 5*1^2 + 9*1*1 + 3*1^2).
		

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory. Academic Press, NY, 1966.
  • D. B. Zagier, Zetafunktionen und quadratische Körper, Springer, 1981.

Crossrefs

Cf. A141159, A139492 (d=21) A038872 (d=5). A038873 (d=8). A068228, A141123 (d=12). A038883 (d=13). A038889 (d=17): A141111, A141112 (d=65).
Primes in A237351.
For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.

Programs

  • Magma
    [3] cat [p: p in PrimesUpTo(2000) | p mod 21 in [5, 17, 20]]; // Vincenzo Librandi, Jul 11 2018
    
  • Mathematica
    Reap[For[p = 2, p < 2000, p = NextPrime[p], If[FindInstance[p == -x^2 + 3*x*y + 3*y^2, {x, y}, Integers, 1] =!= {}, Print[p]; Sow[p]]]][[2, 1]] (* Jean-François Alcover, Oct 25 2016 *)
    Join[{3}, Select[Prime[Range[250]], MemberQ[{5, 17, 20}, Mod[#, 21]] &]] (* Vincenzo Librandi, Jul 11 2018 *)
  • Sage
    # uses[binaryQF]
    # The function binaryQF is defined in the link 'Binary Quadratic Forms'.
    Q = binaryQF([-1, 3, 3])
    Q.represented_positives(1200, 'prime') # Peter Luschny, Jun 24 2019

Extensions

More terms from Colin Barker, Apr 05 2015

A236330 Positive integers n such that x^2 - 14xy + y^2 + n = 0 has integer solutions.

Original entry on oeis.org

32, 48, 128, 176, 192, 288, 368, 416, 432, 512, 624, 704, 752, 768, 800, 944, 1056, 1136, 1152, 1184, 1200, 1328, 1472, 1568, 1584, 1664, 1712, 1728, 1776, 1952, 2048, 2096, 2208, 2288, 2336, 2352, 2496, 2592, 2672, 2816, 2864, 2928, 3008, 3056, 3072, 3104
Offset: 1

Views

Author

Colin Barker, Feb 16 2014

Keywords

Examples

			48 is in the sequence because x^2 - 14xy + y^2 + 48 = 0 has integer solutions, for example (x, y) = (2, 26).
		

Crossrefs

Cf. A001835 (n = 32), A001075 (n = 48), A237250 (n = 176), A003500 (n = 192), A082841 (n = 288), A151961 (n = 432), A077238 (n = 624).

A236331 Positive integers n such that x^2 - 18xy + y^2 + n = 0 has integer solutions.

Original entry on oeis.org

64, 256, 320, 576, 704, 1024, 1216, 1280, 1600, 1856, 1984, 2304, 2624, 2816, 2880, 3136, 3520, 3776, 3904, 4096, 4544, 4864, 5056, 5120, 5184, 5696, 6080, 6336, 6400, 6464, 6976, 7424, 7744, 7936, 8000, 8384, 8896, 9216, 9280, 9536, 9664, 9920, 10496, 10816
Offset: 1

Views

Author

Colin Barker, Feb 16 2014

Keywords

Examples

			64 is in the sequence because x^2 - 18xy + y^2 + 64 = 0 has integer solutions, for example (x, y) = (1, 13).
		

Crossrefs

Cf. A001519 (n = 64), A052995 (n = 256), A055819 (n = 256), A005248 (n = 320), A237132 (n = 704), A237133 (n = 1216).

A238240 Positive integers n such that x^2 - 20xy + y^2 + n = 0 has integer solutions.

Original entry on oeis.org

18, 35, 50, 63, 72, 74, 83, 90, 95, 98, 99, 107, 140, 162, 171, 200, 215, 227, 252, 266, 275, 288, 296, 315, 332, 347, 359, 360, 362, 371, 380, 387, 392, 395, 396, 407, 428, 450, 491, 495, 530, 539, 560, 567, 602, 623, 626, 635, 648, 666, 684, 695, 711, 722, 743, 747, 755, 770, 791, 794, 800, 810
Offset: 1

Views

Author

Colin Barker, Feb 20 2014

Keywords

Comments

Positive integers n such that x^2 - 99 y^2 + n = 0 has integer solutions. - Robert Israel, Oct 22 2024

Examples

			63 is in the sequence because x^2 - 20xy + y^2 + 63 = 0 has integer solutions, for example (x, y) = (1, 16).
		

Crossrefs

Cf. A075839 (n = 18), A221763 (n = 63), A198947 (n = 90), A001085 (n = 99).

Programs

  • Maple
    filter:= t -> [isolve(99*y^2 - z^2 = t)] <> []:
    select(filter, [$1..1000]); # Robert Israel, Oct 22 2024

Extensions

Corrected by Robert Israel, Oct 22 2024

A238245 Positive integers n such that x^2 - 22xy + y^2 + n = 0 has integer solutions.

Original entry on oeis.org

20, 39, 56, 71, 80, 84, 95, 104, 111, 116, 119, 120, 156, 180, 191, 224, 239, 255, 284, 296, 311, 320, 336, 351, 359, 380, 399, 404, 416, 431, 444, 455, 464, 471, 476, 479, 480, 500, 504, 551, 596, 599, 624, 639, 680, 695, 696, 719, 720, 756, 764, 791, 824
Offset: 1

Views

Author

Colin Barker, Feb 20 2014

Keywords

Examples

			39 is in the sequence because x^2 - 22xy + y^2 + 39 = 0 has integer solutions, for example (x, y) = (2, 43).
		

Crossrefs

Cf. A157014 (n = 20), A137881 (n = 104), A077422 (n = 120), A133275 (n = 180).
Showing 1-10 of 11 results. Next