A141302
Primes of the form -x^2+6*x*y+6*y^2 (as well as of the form 11*x^2+18*x*y+6*y^2).
Original entry on oeis.org
11, 59, 71, 131, 179, 191, 239, 251, 311, 359, 419, 431, 479, 491, 599, 659, 719, 839, 911, 971, 1019, 1031, 1091, 1151, 1259, 1319, 1439, 1451, 1499, 1511, 1559, 1571, 1619, 1811, 1871, 1931, 1979, 2039, 2099, 2111, 2339, 2351, 2399, 2411, 2459, 2531, 2579, 2591, 2699, 2711
Offset: 1
Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (oscfalgan(AT)yahoo.es), Jun 24 2008
a(3)=71 because we can write 71=-1^2+6*1*3+6*3^2 (or 71=11*1^2+18*1*2+6*2^2).
- Z. I. Borevich and I. R. Shafarevich, Number Theory. Academic Press, NY, 1966.
- D. B. Zagier, Zetafunktionen und quadratische Körper, Springer, 1981.
-
Reap[For[p = 2, p < 3000, p = NextPrime[p], If[FindInstance[p == -x^2 + 6*x*y + 6*y^2, {x, y}, Integers, 1] =!= {}, Print[p]; Sow[p]]]][[2, 1]] (* Jean-François Alcover, Oct 25 2016 *)
A237599
Positive integers k such that x^2 - 6xy + y^2 + k = 0 has integer solutions.
Original entry on oeis.org
4, 7, 8, 16, 23, 28, 31, 32, 36, 47, 56, 63, 64, 68, 71, 72, 79, 92, 100, 103, 112, 119, 124, 127, 128, 136, 144, 151, 164, 167, 175, 184, 188, 191, 196, 199, 200, 207, 223, 224, 239, 248, 252, 256, 263, 271, 272, 279, 284, 287, 288, 292, 311, 316, 324, 328
Offset: 1
4 is in the sequence because x^2 - 6xy + y^2 + 4 = 0 has integer solutions, for example (x, y) = (1, 5).
For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.
A237609
Positive integers k such that x^2 - 9xy + y^2 + k = 0 has integer solutions.
Original entry on oeis.org
7, 13, 17, 19, 28, 41, 52, 61, 63, 68, 73, 76, 77, 83, 101, 112, 117, 131, 139, 143, 153, 161, 164, 167, 171, 173, 175, 187, 208, 209, 227, 241, 244, 252, 259, 271, 272, 283, 292, 293, 299, 304, 307, 308, 325, 332, 343, 349, 369, 371, 391, 404, 409, 425, 437
Offset: 1
7 is in the sequence because x^2 - 9xy + y^2 + 7 = 0 has integer solutions, for example (x, y) = (1, 8).
A237610
Positive integers k such that x^2 - 10xy + y^2 + k = 0 has integer solutions.
Original entry on oeis.org
8, 15, 20, 23, 24, 32, 47, 60, 71, 72, 80, 87, 92, 95, 96, 116, 128, 135, 152, 159, 167, 180, 188, 191, 200, 207, 212, 215, 216, 239, 240, 263, 276, 284, 288, 303, 311, 320, 335, 344, 348, 359, 368, 375, 380, 383, 384, 392, 404, 423, 431, 447, 456, 464, 479
Offset: 1
15 is in the sequence because x^2 - 10xy + y^2 + 15 = 0 has integer solutions, for example (x, y) = (2, 19).
-
is(n)=m=bnfisintnorm(bnfinit(x^2-10*x+1),-n);#m>0&&denominator(polcoeff(m[1],1))==1 \\ Ralf Stephan, Feb 11 2014
A236330
Positive integers n such that x^2 - 14xy + y^2 + n = 0 has integer solutions.
Original entry on oeis.org
32, 48, 128, 176, 192, 288, 368, 416, 432, 512, 624, 704, 752, 768, 800, 944, 1056, 1136, 1152, 1184, 1200, 1328, 1472, 1568, 1584, 1664, 1712, 1728, 1776, 1952, 2048, 2096, 2208, 2288, 2336, 2352, 2496, 2592, 2672, 2816, 2864, 2928, 3008, 3056, 3072, 3104
Offset: 1
48 is in the sequence because x^2 - 14xy + y^2 + 48 = 0 has integer solutions, for example (x, y) = (2, 26).
A236331
Positive integers n such that x^2 - 18xy + y^2 + n = 0 has integer solutions.
Original entry on oeis.org
64, 256, 320, 576, 704, 1024, 1216, 1280, 1600, 1856, 1984, 2304, 2624, 2816, 2880, 3136, 3520, 3776, 3904, 4096, 4544, 4864, 5056, 5120, 5184, 5696, 6080, 6336, 6400, 6464, 6976, 7424, 7744, 7936, 8000, 8384, 8896, 9216, 9280, 9536, 9664, 9920, 10496, 10816
Offset: 1
64 is in the sequence because x^2 - 18xy + y^2 + 64 = 0 has integer solutions, for example (x, y) = (1, 13).
A238240
Positive integers n such that x^2 - 20xy + y^2 + n = 0 has integer solutions.
Original entry on oeis.org
18, 35, 50, 63, 72, 74, 83, 90, 95, 98, 99, 107, 140, 162, 171, 200, 215, 227, 252, 266, 275, 288, 296, 315, 332, 347, 359, 360, 362, 371, 380, 387, 392, 395, 396, 407, 428, 450, 491, 495, 530, 539, 560, 567, 602, 623, 626, 635, 648, 666, 684, 695, 711, 722, 743, 747, 755, 770, 791, 794, 800, 810
Offset: 1
63 is in the sequence because x^2 - 20xy + y^2 + 63 = 0 has integer solutions, for example (x, y) = (1, 16).
A243189
Nonnegative numbers of the form 2x^2 + 6xy - 3y^2.
Original entry on oeis.org
0, 2, 5, 8, 17, 18, 20, 32, 33, 42, 45, 50, 53, 68, 72, 77, 80, 98, 105, 113, 122, 125, 128, 132, 137, 153, 162, 168, 170, 173, 177, 180, 197, 200, 212, 213, 218, 233, 242, 245, 257, 258, 272, 288, 293, 297, 305, 308, 317, 320, 330, 338, 353, 357, 362, 378
Offset: 1
-
Reap[For[n = 0, n <= 200, n++, If[Reduce[2*x^2 + 6*x*y - 3*y^2 == n, {x, y}, Integers] =!= False, Sow[n]]]][[2, 1]]
A243190
Nonnegative numbers of the form -2x^2+6xy+3y^2.
Original entry on oeis.org
0, 3, 7, 12, 22, 27, 28, 30, 43, 48, 55, 63, 67, 70, 75, 88, 102, 103, 108, 112, 118, 120, 127, 142, 147, 163, 172, 175, 183, 187, 192, 198, 220, 223, 238, 243, 252, 255, 262, 268, 270, 280, 283, 295, 300, 307, 318, 327, 343, 352, 355, 358, 363, 367, 382
Offset: 1
-
Reap[For[n = 0, n <= 200, n++, If[Reduce[-2*x^2 + 6*x*y + 3*y^2 == n, {x, y}, Integers] =!= False, Sow[n]]]][[2, 1]]
A378710
Positive numbers k such that -k is properly represented by the Pell Form x^2 - 15*y^2.
Original entry on oeis.org
6, 11, 14, 15, 35, 51, 59, 71, 86, 110, 119, 131, 134, 159, 179, 191, 206, 215, 231, 239, 251, 254, 294, 311, 326, 335, 339, 359, 366, 371, 374, 411, 419, 431, 446, 479, 491, 519, 515, 519, 539, 566, 590, 591, 599, 614, 635, 654, 659, 671, 686
Offset: 1
-2, -3, and -5 are not in the sequence because the rpapfs are [-2, 2, 7] reaching after two R(t)-steps with t values -0 and -1 the cycle member Cyhat(1), [-3, 0, 5] reaching with t values 0 and 1 Cy(1), and [-5, 0, 3] reaches with t = 0 Cyhat(2), respectively.
-a(1) = -6 = -2*3 is represented because [-6, 6, 1] = CR(2) (already a reduced form). There is only one infinite family of proper solutions with y > 0 (an ambiguous case) with fundamental solution (x, y) = (3, 1).
There is no solution representing -10 = -2*5, because [-10, 10, -1] leads with t = -8 to CRhat(1).
-a(11) = - 119 has the four rpapfs [-119, 54, -6], [-119, 82, -14], [-119, 156, -51], and [-119, 184, -71]. They lead with t = -5, t = -3, 4, t = -1, 2, 2, and t = -1, 3 to members CR(2), CR(1), CR(1), and CR(2), respectively.
- T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1986. Theorem 5.10, pp, 121-122.
- A. Buell, Binary Quadratic Forms. Springer-Verlag, NY, 1989, pp. 21 - 34.
- Trygve Nagell, Introduction to Number Theory, 2nd edition, Chelsea Publishing Company, 1964, pp. 195 - 212.
- A. Scholz and B. Schoeneberg, Einführung in die Zahlentheorie, 5. Aufl., de Gruyter, Berlin, New York, 1973, chapter IV, pp. 97 - 126.
Showing 1-10 of 12 results.
Comments