A107152
Primes of the form x^2 + 45y^2.
Original entry on oeis.org
61, 109, 181, 229, 241, 349, 409, 421, 541, 601, 661, 709, 769, 829, 1009, 1021, 1069, 1129, 1201, 1249, 1321, 1381, 1429, 1489, 1549, 1609, 1621, 1669, 1741, 1789, 1801, 1861, 2029, 2089, 2161, 2221, 2269, 2281, 2341, 2389, 2521, 2689, 2749, 3001, 3049, 3061, 3109, 3121, 3169, 3181
Offset: 1
- Z. I. Borevich and I. R. Shafarevich, Number Theory.
- Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
- William C. Jagy and Irving Kaplansky, Positive definite binary quadratic forms that represent the same primes [Cached copy]
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS: Index to related sequences, programs, references. OEIS wiki, June 2014.
- D. B. Zagier, Zetafunktionen und quadratische Körper, Springer, 1981.
For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.
-
[ p: p in PrimesUpTo(3000) | p mod 60 in {1, 49 } ]; // Vincenzo Librandi, Jul 24 2012
-
QuadPrimes2[1, 0, 45, 10000] (* see A106856 *)
Select[Prime[Range[500]], MatchQ[Mod[#, 60], 1|49]&] (* Jean-François Alcover, Oct 28 2016 *)
-
list(lim)=my(v=List(),t); forprime(p=61,lim, t=p%60; if(t==1||t==49, listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Feb 09 2017
A237606
Positive integers k such that x^2 - 8xy + y^2 + k = 0 has integer solutions.
Original entry on oeis.org
6, 11, 14, 15, 24, 35, 44, 51, 54, 56, 59, 60, 71, 86, 96, 99, 110, 119, 126, 131, 134, 135, 140, 150, 159, 176, 179, 191, 204, 206, 215, 216, 224, 231, 236, 239, 240, 251, 254, 275, 284, 294, 311, 315, 326, 335, 339, 344, 350, 359, 366, 371, 374, 375, 384
Offset: 1
6 is in the sequence because x^2 - 8xy + y^2 + 6 = 0 has integer solutions, for example (x, y) = (1, 7).
Cf.
A378710,
A378711 (subsequence of properly represented numbers and fundamental solutions).
A141303
Primes of the form 2*x^2+6*x*y-3*y^2 (as well as of the form 5*x^2+10*x*y+2*y^2).
Original entry on oeis.org
2, 5, 17, 53, 113, 137, 173, 197, 233, 257, 293, 317, 353, 557, 593, 617, 653, 677, 773, 797, 857, 953, 977, 1013, 1097, 1193, 1217, 1277, 1373, 1433, 1493, 1553, 1613, 1637, 1697, 1733, 1877, 1913, 1973, 1997, 2153, 2213, 2237, 2273, 2297, 2333, 2357, 2393, 2417, 2477
Offset: 1
Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (oscfalgan(AT)yahoo.es), Jun 24 2008
a(3)=17 because we can write 17=2*2^2+6*2*1-3*1^2 (or 17=5*1^2+10*1*1+2*1^2).
- Z. I. Borevich and I. R. Shafarevich, Number Theory.
-
Select[Prime[Range[500]], # == 2 || # == 5 || MatchQ[Mod[#, 60], 17|53]&] (* Jean-François Alcover, Oct 28 2016 *)
A141304
Primes of the form -2*x^2+6*x*y+3*y^2 (as well as of the form 7*x^2+12*x*y+3*y^2).
Original entry on oeis.org
3, 7, 43, 67, 103, 127, 163, 223, 283, 307, 367, 463, 487, 523, 547, 607, 643, 727, 787, 823, 883, 907, 967, 1063, 1087, 1123, 1303, 1327, 1423, 1447, 1483, 1543, 1567, 1627, 1663, 1723, 1747, 1783, 1867, 1987, 2083, 2143, 2203, 2287, 2347, 2383, 2467, 2503, 2647, 2683
Offset: 1
Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (oscfalgan(AT)yahoo.es), Jun 24 2008
a(3)=43 because we can write 43=-2*1^2+6*1*3+3*3^2 (or 43=7*1^2+12*1*2+3*2^2).
- Z. I. Borevich and I. R. Shafarevich, Number Theory.
A141373
Primes of the form 3*x^2+16*y^2. Also primes of the form 4*x^2+4*x*y-5*y^2 (as well as primes the form 4*x^2+12*x*y+3*y^2).
Original entry on oeis.org
3, 19, 43, 67, 139, 163, 211, 283, 307, 331, 379, 499, 523, 547, 571, 619, 643, 691, 739, 787, 811, 859, 883, 907, 1051, 1123, 1171, 1291, 1459, 1483, 1531, 1579, 1627, 1699, 1723, 1747, 1867, 1987, 2011, 2083, 2131, 2179, 2203, 2251, 2347, 2371, 2467, 2539
Offset: 1
T. D. Noe, May 13 2005; Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (oscfalgan(AT)yahoo.es), Jun 28 2008
19 is a member because we can write 19=4*2^2+4*2*1-5*1^2 (or 19=4*1^2+12*1*1+3*1^2).
- Z. I. Borevich and I. R. Shafarevich, Number Theory.
- Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
- William C. Jagy and Irving Kaplansky, Positive definite binary quadratic forms that represent the same primes [Cached copy] See Table II.
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS: Index to related sequences, programs, references. OEIS wiki, June 2014.
- D. B. Zagier, Zetafunktionen und quadratische Körper, Springer, 1981.
-
[3] cat [ p: p in PrimesUpTo(3000) | p mod 24 in {19 } ]; // Vincenzo Librandi, Jul 24 2012
-
QuadPrimes2[3, 0, 16, 10000] (* see A106856 *)
-
list(lim)=my(v=List(),w,t); for(x=1, sqrtint(lim\3), w=3*x^2; for(y=0, sqrtint((lim-w)\16), if(isprime(t=w+16*y^2), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Feb 09 2017
Edited by
N. J. A. Sloane, Jul 14 2019, combining two identical entries both with multiple cross-references.
A243189
Nonnegative numbers of the form 2x^2 + 6xy - 3y^2.
Original entry on oeis.org
0, 2, 5, 8, 17, 18, 20, 32, 33, 42, 45, 50, 53, 68, 72, 77, 80, 98, 105, 113, 122, 125, 128, 132, 137, 153, 162, 168, 170, 173, 177, 180, 197, 200, 212, 213, 218, 233, 242, 245, 257, 258, 272, 288, 293, 297, 305, 308, 317, 320, 330, 338, 353, 357, 362, 378
Offset: 1
-
Reap[For[n = 0, n <= 200, n++, If[Reduce[2*x^2 + 6*x*y - 3*y^2 == n, {x, y}, Integers] =!= False, Sow[n]]]][[2, 1]]
A243190
Nonnegative numbers of the form -2x^2+6xy+3y^2.
Original entry on oeis.org
0, 3, 7, 12, 22, 27, 28, 30, 43, 48, 55, 63, 67, 70, 75, 88, 102, 103, 108, 112, 118, 120, 127, 142, 147, 163, 172, 175, 183, 187, 192, 198, 220, 223, 238, 243, 252, 255, 262, 268, 270, 280, 283, 295, 300, 307, 318, 327, 343, 352, 355, 358, 363, 367, 382
Offset: 1
-
Reap[For[n = 0, n <= 200, n++, If[Reduce[-2*x^2 + 6*x*y + 3*y^2 == n, {x, y}, Integers] =!= False, Sow[n]]]][[2, 1]]
A378711
Irregular triangle read by rows: row n gives the proper positive integer fundamental solutions (x, y) of x^2 - 15*y^2 = - A378710(n), for n >= 1.
Original entry on oeis.org
3, 1, 2, 1, 7, 2, 1, 1, 11, 3, 15, 4, 5, 2, 10, 3, 3, 2, 18, 5, 1, 2, 26, 7, 8, 3, 13, 4, 7, 3, 17, 5, 5, 3, 25, 7, 4, 3, 11, 4, 16, 5, 29, 8, 2, 3, 37, 10, 1, 3, 41, 11, 9, 4, 24, 7, 14, 5, 19, 6, 7, 4, 32, 9, 13, 5, 23, 7, 5, 4, 40, 11, 3, 4, 12, 5, 27, 8, 48, 13, 1, 4, 56, 15
Offset: 1
n, A378710(n) \ k 1 2 3 4 5 6 7 8 pairs = 2^P
----------------------------------------------------------------------
1, 6 = 2*3 | 3 1 1
2, 11 | 2 1, 7 2 2
3, 14 = 2*7 | 1 1, 11 3 2
4, 15 = 3*5 | 15 4 1
5, 35 = 5*7 | 5 2, 10 3 2
6, 51 = 3*17 | 3 2, 18 5 2
7, 59 | 1 2, 26 7 2
8, 71 | 8 3, 13 4 2
9, 86 = 2*43 | 7 3, 17 5 2
10, 110 = 2*5*11 | 5 3, 25 7 2
11 119 = 7*17 | 4 3, 11 4, 16 5, 29 8 4
12, 131 | 2 3, 37 10 2
13, 134 = 2*67 | 1 3, 41 11 2
14, 159 = 3*53 | 9 4, 24 7 2
15, 179 | 14 5, 19 6 2
16, 191 | 7 4, 32 9 2
17, 206 = 2*103 | 13 5, 23 7 2
18, 215 = 5*43 | 5 4, 40 11 2
19, 231 = 3*7*11 | 3 4, 12 5, 27 8, 48 13 4
20, 239 | 1 4, 56 15 2
...
For the representation of -A378710(19) = -231 = -3*7*11 see the linked Figure of the directed and weighted Pell cycle graph with the two pairs of conjugate rpapfs (corresponding to solution of the congruence j^2 - 15 = = 0 (mod 231) with j and 231 - j, for j = 57 and j = 90. There the t-values are given as weights. E.g., the rpapf Fpa4 = [-231. 282, -86] has t-values (1-, 2, 2, 6). The pairs of row n = 19 belong to FPa1, FPa3, Fpa4 and FPa2, with the i exponents in the formula above 0, 0, 1, 1, respectively, and the sign of B15 is - in all four cases.
- T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1986.
A141750
Primes of the form 4*x^2 + 3*x*y - 4*y^2 (as well as of the form 2*x^2 + 9*x*y + y^2).
Original entry on oeis.org
2, 3, 19, 23, 37, 41, 61, 67, 71, 73, 79, 89, 97, 109, 127, 137, 149, 173, 181, 211, 223, 227, 251, 257, 269, 283, 293, 311, 317, 347, 349, 353, 359, 367, 373, 383, 389, 397, 401, 419, 439, 457, 461, 463, 479, 487, 499, 503, 509, 523, 547, 557, 587, 593, 607
Offset: 1
Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (sergarmor(AT)yahoo.es), Jul 03 2008
a(2) = 3 because we can write 3 = 4*1^2 + 3*1*1 - 4*1^2.
- Z. I. Borevich and I. R. Shafarevich, Number Theory.
See also
A038872 (d=5).
A038873 (d=8).
A068228,
A141123 (d=12).
A038883 (d=13).
A038889 (d=17).
A141158 (d=20).
A141159,
A141160 (d=21).
A141170,
A141171 (d=24).
A141172,
A141173 (d=28).
A141174,
A141175 (d=32).
A141176,
A141177 (d=33).
A141178 (d=37).
A141179,
A141180 (d=40).
A141181 (d=41).
A141182,
A141183 (d=44).
A033212,
A141785 (d=45).
A068228,
A141187 (d=48).
A141188 (d=52).
A141189 (d=53).
A141190,
A141191 (d=56).
A141192,
A141193 (d=57).
A107152,
A141302,
A141303,
A141304 (d=60).
A141215 (d=61).
A141111,
A141112 (d=65).
A141161,
A141163 (d=148).
A141165,
A141166 (d=229).
A141167,
A141168 (d=257).
A141772
Primes of the form 3*x^2 + 5*x*y - 5*y^2 (as well as of the form 7*x^2 + 13*x*y + 3*y^2).
Original entry on oeis.org
3, 5, 7, 17, 23, 37, 73, 97, 107, 113, 163, 167, 173, 193, 197, 227, 233, 277, 283, 313, 317, 337, 347, 367, 397, 487, 503, 547, 607, 617, 643, 653, 673, 677, 683, 743, 787, 823, 827, 853, 857, 877, 887, 907, 947, 983, 997, 1013, 1093, 1117, 1153, 1163, 1187
Offset: 1
Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (sergarmor(AT)yahoo.es), Jul 04 2008
a(1) = 3 because we can write 3 = 3*1^2 + 5*1*0 - 5*0^2 (or 3 = 7*0^2 + 13*0*1 + 3*1^2).
- Z. I. Borevich and I. R. Shafarevich, Number Theory.
Cf.
A141773 (d=85). See also
A038872 (d=5).
A038873 (d=8).
A068228,
A141123 (d=12).
A038883 (d=13).
A038889 (d=17).
A141158 (d=20).
A141159,
A141160 (d=21).
A141170,
A141171 (d=24).
A141172,
A141173 (d=28).
A141174,
A141175 (d=32).
A141176,
A141177 (d=33).
A141178 (d=37).
A141179,
A141180 (d=40).
A141181 (d=41).
A141182,
A141183 (d=44).
A033212,
A141785 (d=45).
A068228,
A141187 (d=48).
A141188 (d=52).
A141189 (d=53).
A141190,
A141191 (d=56).
A141192,
A141193 (d=57).
A107152,
A141302,
A141303,
A141304 (d=60).
A141215 (d=61).
A141111,
A141112 (d=65).
A141750 (d=73).
A141161,
A141163 (d=148).
A141165,
A141166 (d=229).
A141167,
A141168 (d=257).
Showing 1-10 of 12 results.
Comments