cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A227610 Number of ways 1/n can be expressed as the sum of three distinct unit fractions: 1/n = 1/x + 1/y + 1/z satisfying 0 < x < y < z.

Original entry on oeis.org

1, 6, 15, 22, 30, 45, 36, 62, 69, 84, 56, 142, 53, 124, 178, 118, 67, 191, 74, 274, 227, 145, 87, 342, 146, 162, 216, 322, 100, 461, 84, 257, 304, 199, 435, 508, 79, 204, 360, 580, 115, 587, 98, 455, 618, 192, 129, 676, 217, 417, 369, 449, 119, 573, 543, 759, 367, 240, 166, 1236, 102, 261, 857, 428, 568, 717, 115, 537, 460, 1018, 155, 1126, 112, 276, 839
Offset: 1

Views

Author

Robert G. Wilson v, Jul 17 2013

Keywords

Comments

See A073101 for the 4/n conjecture due to Erdős and Straus.

Examples

			a(1)=1 because 1 = 1/2 + 1/3 + 1/6;
a(2)=6 because 1/2 = 1/3 + 1/7 + 1/42 = 1/3 + 1/8 + 1/24 = 1/3 + 1/9 + 1/18 = 1/3 + 1/10 + 1/15 = 1/4 + 1/5 + 1/20 = 1/4 + 1/6 + 1/12;
a(3)=15 because 1/3 = 1/x + 1/y + 1/z presented as {x,y,z}: {4,13,156}, {4,14,84}, {4,15,60}, {4,16,48}, {4,18,36}, {4,20,30}, {4,21,28}, {5,8,120}, {5,9,45}, {5,10,30}, {5,12,20}, {6,7,42}, {6,8,24}, {6,9,18}, {6,10,15}; etc.
		

Crossrefs

Cf. A227611 (2/n), A075785 (3/n), A073101 (4/n), A075248 (5/n), A227612.

Programs

  • Mathematica
    f[n_] := Length@ Solve[1/n == 1/x + 1/y + 1/z && 0 < x < y < z, {x, y, z}, Integers]; Array[f, 70]

A272083 Irregular triangle read by rows: strictly decreasing positive integer sequences in lexicographic order with the property that the sum of inverses equals one.

Original entry on oeis.org

1, 6, 3, 2, 12, 6, 4, 2, 15, 10, 3, 2, 15, 12, 10, 4, 2, 15, 12, 10, 6, 4, 3, 18, 9, 3, 2, 18, 12, 9, 4, 2, 18, 12, 9, 6, 4, 3, 18, 15, 10, 9, 6, 2, 18, 15, 12, 10, 9, 4, 3, 20, 5, 4, 2, 20, 6, 5, 4, 3, 20, 12, 6, 5, 2, 20, 15, 10, 5, 4, 3, 20, 15, 12, 10, 5
Offset: 1

Views

Author

Peter Kagey, Apr 19 2016

Keywords

Examples

			First six rows:
[1]                   because 1/1 = 1.
[6, 3, 2]             because 1/6 + 1/3 + 1/2 = 1.
[12, 6, 4, 2]         because 1/12 + 1/6 + 1/4 + 1/2 = 1.
[15, 10, 3, 2]        because 1/15 + 1/10 + 1/3 + 1/2 = 1.
[15, 12, 10, 4, 2]    because 1/15 + 1/12 + 1/10 + 1/4 + 1/2 = 1.
[15, 12, 10, 6, 4, 3] because 1/15 + 1/12 + 1/10 + 1/6 + 1/4 + 1/3 = 1.
		

Crossrefs

A216975 Triangle read by rows in which row n gives the lexicographically earliest minimal sum denominators among all possible n-term Egyptian fractions with unit sum.

Original entry on oeis.org

1, 0, 0, 2, 3, 6, 2, 4, 6, 12, 3, 4, 5, 6, 20, 3, 4, 6, 10, 12, 15, 3, 4, 9, 10, 12, 15, 18, 4, 5, 6, 9, 10, 15, 18, 20, 4, 6, 8, 9, 10, 12, 15, 18, 24, 5, 6, 8, 9, 10, 12, 15, 18, 20, 24, 6, 7, 8, 9, 10, 12, 14, 15, 18, 24, 28, 6, 7, 9, 10, 11, 12, 14, 15, 18, 22, 28, 33, 7, 8, 9, 10, 11, 12, 14, 15, 18, 22, 24, 28, 33
Offset: 1

Views

Author

Robert Price, Sep 21 2012

Keywords

Comments

This sequence is the lexicographically earliest Egyptian fraction (denominators only) describing the minimal sum given in A213062.
Row 2 = [0,0] corresponds to the fact that 1 cannot be written as Egyptian fraction with 2 (distinct) terms.

Examples

			Row 5 = [3,4,5,6,20]: lexicographically earliest minimal sum (38) denominators among 72 possible 5-term Egyptian fractions with unit sum.
1 = 1/3 + 1/4 + 1/5 + 1/6 + 1/20.
Triangle begins:
1;
0, 0;
2, 3, 6;
2, 4, 6, 12;
3, 4, 5,  6, 20;
3, 4, 6, 10, 12, 15;
		

References

  • Mohammad K. Azarian, Sylvester's Sequence and the Infinite Egyptian Fraction Decomposition of 1, Problem 958, College Mathematics Journal, Vol. 42, No. 4, September 2011, p. 330. Solution published in Vol. 43, No. 4, September 2012, pp. 340-342

Crossrefs

A216993 Triangle read by rows in which row n gives the lexicographically earliest denominators with the least possible maximum value among all n-term Egyptian fractions with unit sum.

Original entry on oeis.org

1, 0, 0, 2, 3, 6, 2, 4, 6, 12, 2, 4, 10, 12, 15, 3, 4, 6, 10, 12, 15, 3, 4, 9, 10, 12, 15, 18, 3, 5, 9, 10, 12, 15, 18, 20, 4, 5, 8, 9, 10, 15, 18, 20, 24, 5, 6, 8, 9, 10, 12, 15, 18, 20, 24, 5, 6, 8, 9, 10, 15, 18, 20, 21, 24, 28, 4, 8, 9, 10, 12, 15, 18, 20, 21, 24, 28, 30, 4, 8, 9, 11, 12, 18, 20, 21, 22, 24, 28, 30, 33
Offset: 1

Views

Author

Robert Price, Sep 21 2012

Keywords

Comments

This sequence is the lexicographically earliest Egyptian fraction (denominators only) describing the minimum largest denominator given in A030659.
Row 2 = [0,0] corresponds to the fact that 1 cannot be written as an Egyptian fraction with 2 (distinct) terms.

Examples

			Row 5 = [2,4,10,12,15]: lexicographically earliest denominators with the least possible maximum value (15) among 72 possible 5-term Egyptian fractions equal to 1. 1 = 1/2 + 1/4 + 1/10 + 1/12 + 1/15.
Triangle begins:
  1;
  0, 0;
  2, 3,  6;
  2, 4,  6, 12;
  2, 4, 10, 12, 15;
  3, 4,  6, 10, 12, 15;
		

Crossrefs

A227611 Number of ways 2/n can be expressed as the sum of three distinct unit fractions: 2/n = 1/x + 1/y + 1/z with 0 < x < y < z.

Original entry on oeis.org

0, 1, 5, 6, 9, 15, 14, 22, 21, 30, 22, 45, 17, 36, 72, 62, 22, 69, 29, 84, 77, 56, 39, 142, 48, 53, 82, 124, 30, 178, 34, 118, 94, 67, 176, 191, 29, 74, 151, 274, 37, 227, 37, 145, 220, 87, 57, 342, 80, 146, 138, 162, 39, 216, 214, 322, 134, 100, 73, 461, 31, 84, 316, 257, 197, 304, 47, 199, 166, 435, 69, 508, 34, 79, 317
Offset: 1

Views

Author

Robert G. Wilson v, Jul 17 2013

Keywords

Comments

See A073101 for the 4/n conjecture due to Erdős and Straus.

Crossrefs

Cf. A227610 (1/n), A075785 (3/n), A073101 (4/n), A075248 (5/n), A227612.

Programs

  • Mathematica
    f[n_] := Length@ Solve[2/n == 1/x + 1/y + 1/z && 0 < x < y < z, {x, y, z}, Integers]; Array[f, 75]

A227612 Table read by antidiagonals: Number of ways m/n can be expressed as the sum of three distinct unit fractions, i.e., m/n = 1/x + 1/y + 1/z satisfying 0 < x < y < z and read by antidiagonals.

Original entry on oeis.org

1, 0, 6, 0, 1, 15, 0, 1, 5, 22, 0, 0, 1, 6, 30, 0, 0, 1, 3, 9, 45, 0, 0, 1, 1, 7, 15, 36, 0, 0, 0, 2, 2, 6, 14, 62, 0, 0, 0, 1, 1, 5, 6, 22, 69, 0, 0, 0, 1, 1, 1, 5, 16, 21, 84, 0, 0, 0, 0, 1, 1, 3, 6, 15, 30, 56, 0, 0, 0, 0, 1, 4, 1, 5, 4, 15, 22, 142, 0, 0, 0, 0, 0, 1, 1, 3, 9, 9, 13, 45, 53
Offset: 1

Views

Author

Robert G. Wilson v, Jul 17 2013

Keywords

Comments

The main diagonal is 1, 1, 1, 1, 1, 1, 1, ..., ; i.e., 1 = 1/2 + 1/3 + 1/6.

Examples

			  m\n| 1  2   3   4   5   6   7   8   9  10  11   12  13   14   15
  ---+------------------------------------------------------------
   1 | 1  6  15  22  30  45  36  62  69  84  56  142  53  124  178  A227610
   2 | 0  1   5   6   9  15  14  22  21  30  22   45  17   36   72  A227611
   3 | 0  1   1   3   7   6   6  16  15  15  13   22   8   27   30  A075785
   4 | 0  0   1   1   2   5   5   6   4   9   7   15   4   14   33  A073101
   5 | 0  0   1   2   1   1   3   5   9   6   3   12   5   18   15  A075248
   6 | 0  0   0   1   1   1   1   3   5   7   5    6   1    6    9  n/a
   7 | 0  0   0   1   1   4   1   2   2   2   2    9   6    6    7  n/a
   8 | 0  0   0   0   1   1   1   1   1   2   0    5   3    5   15  n/a
   9 | 0  0   0   0   0   1   1   3   1   1   0    3   1    2    7  n/a
  10 | 0  0   0   0   0   1   0   2   2   1   0    1   1    3    5  n/a
.
Antidiagonals are {1}, {0, 6}, {0, 1, 15}, {0, 1, 5, 22}, {0, 0, 1, 6, 30}, {0, 0, 1, 3, 9, 45}, ...
		

Crossrefs

Cf. A002966, A073546, A227610 (1/n), A227611 (2/n), A075785 (3/n), A073101 (4/n), A075248 (5/n).

Programs

  • Mathematica
    f[m_, n_] := Length@ Solve[m/n == 1/x + 1/y + 1/z && 0 < x < y < z, {x, y, z}, Integers]; Table[ f[n, m - n + 1], {m, 12}, {n, m, 1, -1}]

A347566 Number of ways 1/n can be expressed as the sum of five distinct unit fractions: 1/n = 1/p + 1/q + 1/r + 1/s + 1/t, with 0 < p < q < r < s < t.

Original entry on oeis.org

72, 2293, 15304, 47314, 112535, 190665, 368474, 577623, 925336, 1164976, 1478492, 2051830, 2240745, 3789424, 4989958, 4672559, 4467275, 7104589, 6548335, 13844524, 13580094, 10633142, 10451326, 20262957, 16621976, 18697914, 25613090, 27523671
Offset: 1

Views

Author

Jud McCranie, Sep 06 2021

Keywords

Crossrefs

A347569 Number of ways 1/n can be expressed as the sum of six distinct unit fractions: 1/n = 1/p + 1/q + 1/r + 1/s + 1/t + 1/u, with 0 < p < q < r < s < t < u.

Original entry on oeis.org

2320, 244817, 3421052, 18420699, 64025680, 131223239, 431008820, 681922142
Offset: 1

Views

Author

Jud McCranie, Sep 06 2021

Keywords

Crossrefs

Extensions

a(7) and a(8) from Jud McCranie, Oct 15 2021

A351532 Number of integer pairs (i, j), 0 < i, j < n, such that i/(n - i) + j/(n - j) = 1.

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 3, 0, 2, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 2, 5, 0, 0, 1, 2, 0, 1, 0, 0, 3, 0, 0, 1, 0, 0, 1, 0, 0, 3, 0, 2, 1, 0, 0, 3, 0, 0, 1, 0, 0, 1, 0, 0, 1, 2, 0, 5, 0, 0, 1, 0, 2, 1, 0, 2, 1, 0, 0, 3, 0, 0, 1, 0, 0, 7, 0, 0, 1, 0, 0, 1, 0, 0, 1, 2, 0, 1, 0, 2, 3
Offset: 1

Views

Author

Lars Blomberg, Feb 14 2022

Keywords

Comments

By symmetry, if (i, j) is a solution then so is (j, i). When j=i we get n = 3i, corresponding to the solution 1/2 + 1/2 = 1. Therefore, when 3|n, a(n) > 0 and odd, otherwise a(n) >= 0 and even.
For n < 10^6, the largest term is a(720720) = 285, and 483188 terms are 0.
Other record terms: a(1081080) = 369, a(2162160) = 457, a(3243240) = 481, a(4324320) = 533, a(5405400) = 559, a(6126120) = 597. Record terms with index >= 360360 appear to occur at indices that are multiples of 180180. - Chai Wah Wu, Feb 15 2022

Examples

			For n = 3: (i, j) = (1, 1), so a(3) = 1. (1/2 + 1/2 = 1)
For n = 18: (i, j) = (3, 8), (6, 6), (8, 3), so a(18) = 3. (3/15 + 8/10 = 1/5 + 4/5 = 1)
For n = 20: (i, j) = (5, 8), (8, 5), so a(20) = 2.
For n = 36: (i, j) = (6, 16), (8, 15), (12, 12), (15, 8), (16, 6), so a(36) = 5.
		

Crossrefs

Programs

  • PARI
    a(n)={my(x=n^2, y=2*n); sum(i=1,(n-1)/2, x-=2*n; y-=3; if(x%y==0,1,0))}
    
  • Python
    from sympy.abc import i, j
    from sympy.solvers.diophantine.diophantine import diop_quadratic
    def A351532(n):
        return sum(1 for d in diop_quadratic(n**2+3*i*j-2*n*(i+j)) if 0 < d[0] < n and 0 < d[1] < n) # Chai Wah Wu, Feb 15 2022

Formula

The original equation can be solved for j giving j = (n(n - 2i)) / (2n - 3i). Varying i from 1 to n-1, a(n) is given by the number of integer values of j, 0 < j < n.

Extensions

Data section extended up to a(105) by Antti Karttunen, Jan 17 2025

A378723 Triangle read by rows: row n gives denominators of n distinct unit fractions (or Egyptian fractions) summing to 1, where denominators are listed in increasing order and the denominators from largest to smallest are as small as possible.

Original entry on oeis.org

1, 0, 0, 2, 3, 6, 2, 4, 6, 12, 2, 4, 10, 12, 15, 3, 4, 6, 10, 12, 15, 3, 4, 9, 10, 12, 15, 18, 4, 5, 6, 9, 10, 15, 18, 20, 4, 6, 8, 9, 10, 12, 15, 18, 24, 5, 6, 8, 9, 10, 12, 15, 18, 20, 24, 6, 7, 8, 9, 10, 12, 14, 15, 18, 24, 28, 6, 7, 8, 9, 10, 14, 15, 18, 20, 24, 28, 30
Offset: 1

Views

Author

Sean A. Irvine, Dec 05 2024

Keywords

Comments

Row 2 = [0,0] corresponds to the fact that 1 cannot be written as an Egyptian fraction with 2 (distinct) terms.
There can be more the one solution with the same smallest maximum denominator. For example, if n=8, we have:
1/3 + 1/5 + 1/9 + 1/10 + 1/12 + 1/15 + 1/18 + 1/20 = 1,
1/4 + 1/5 + 1/6 + 1/9 + 1/10 + 1/15 + 1/18 + 1/20 = 1.
In this sequence, the second solution is taken because 10 < 12 when reading the denominators from the right. In A216993, the first solution is taken because 3 < 4 when reading the denominators from the left.

Examples

			Triangle begins:
  1;
  0, 0;
  2, 3,  6;
  2, 4,  6, 12;
  2, 4, 10, 12, 15;
  3, 4,  6, 10, 12, 15;
  3, 4,  9, 10, 12, 15, 18;
  4, 5,  6,  9, 10, 15, 18, 20;
  4, 6,  8,  9, 10, 12, 15, 18, 24;
  5, 6,  8,  9, 10, 12, 15, 18, 20, 24;
  6, 7,  8,  9, 10, 12, 14, 15, 18, 24, 28;
  6, 7,  8,  9, 10, 14, 15, 18, 20, 24, 28, 30;
  ...
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, 2nd Edition, page 161.

Crossrefs

Showing 1-10 of 10 results.