cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A227610 Number of ways 1/n can be expressed as the sum of three distinct unit fractions: 1/n = 1/x + 1/y + 1/z satisfying 0 < x < y < z.

Original entry on oeis.org

1, 6, 15, 22, 30, 45, 36, 62, 69, 84, 56, 142, 53, 124, 178, 118, 67, 191, 74, 274, 227, 145, 87, 342, 146, 162, 216, 322, 100, 461, 84, 257, 304, 199, 435, 508, 79, 204, 360, 580, 115, 587, 98, 455, 618, 192, 129, 676, 217, 417, 369, 449, 119, 573, 543, 759, 367, 240, 166, 1236, 102, 261, 857, 428, 568, 717, 115, 537, 460, 1018, 155, 1126, 112, 276, 839
Offset: 1

Views

Author

Robert G. Wilson v, Jul 17 2013

Keywords

Comments

See A073101 for the 4/n conjecture due to Erdős and Straus.

Examples

			a(1)=1 because 1 = 1/2 + 1/3 + 1/6;
a(2)=6 because 1/2 = 1/3 + 1/7 + 1/42 = 1/3 + 1/8 + 1/24 = 1/3 + 1/9 + 1/18 = 1/3 + 1/10 + 1/15 = 1/4 + 1/5 + 1/20 = 1/4 + 1/6 + 1/12;
a(3)=15 because 1/3 = 1/x + 1/y + 1/z presented as {x,y,z}: {4,13,156}, {4,14,84}, {4,15,60}, {4,16,48}, {4,18,36}, {4,20,30}, {4,21,28}, {5,8,120}, {5,9,45}, {5,10,30}, {5,12,20}, {6,7,42}, {6,8,24}, {6,9,18}, {6,10,15}; etc.
		

Crossrefs

Cf. A227611 (2/n), A075785 (3/n), A073101 (4/n), A075248 (5/n), A227612.

Programs

  • Mathematica
    f[n_] := Length@ Solve[1/n == 1/x + 1/y + 1/z && 0 < x < y < z, {x, y, z}, Integers]; Array[f, 70]

A226641 Number of ways to express 2/n as Egyptian fractions in just three terms; i.e., 2/n = 1/x + 1/y + 1/z satisfying 1<=x<=y<=z.

Original entry on oeis.org

1, 3, 8, 10, 12, 21, 17, 28, 26, 36, 25, 57, 20, 42, 81, 70, 25, 79, 32, 96, 86, 62, 42, 160, 53, 59, 89, 136, 33, 196, 37, 128, 103, 73, 185, 211, 32, 80, 160, 292, 40, 245, 40, 157, 235, 93, 60, 366, 85, 156, 147, 174, 42, 230, 223, 340, 143, 106, 76, 497, 34, 90, 331, 269, 206, 322, 50, 211, 175, 453, 72, 538, 37, 85, 332, 216, 260, 378, 69, 604, 167, 121, 79, 623, 204, 104, 203, 473, 59, 648, 253, 204, 166, 135, 318, 706, 46, 227, 427, 437
Offset: 1

Views

Author

Keywords

Crossrefs

See A073101 for the 4/n conjecture due to Erdős and Straus.

Programs

  • Mathematica
    a[n_] := Length@ Solve[ 2/n == 1/x + 1/y + 1/z && 1 <= x <= y <= z, {x, y, z}, Integers]; Array[a, 70]

A349083 The number of three-term Egyptian fractions of rational numbers x/y, 0 < x/y < 1, ordered as below. The sequence is the number of (p,q,r) such that x/y = 1/p + 1/q + 1/r where p, q, and r are integers with p < q < r.

Original entry on oeis.org

6, 15, 5, 22, 6, 3, 30, 9, 7, 2, 45, 15, 6, 5, 1, 36, 14, 6, 5, 3, 1, 62, 22, 16, 6, 5, 3, 2, 69, 21, 15, 4, 9, 5, 2, 1, 84, 30, 15, 9, 6, 7, 2, 2, 1, 56, 22, 13, 7, 3, 5, 2, 0, 0, 0, 142, 45, 22, 15, 12, 6, 9, 5, 3, 1, 2, 53, 17, 8, 4, 5, 1, 6, 3, 1, 1, 1, 0, 124, 36, 27, 14, 18, 6, 6, 5, 2, 3, 1, 1, 0
Offset: 1

Views

Author

Jud McCranie, Nov 09 2021

Keywords

Comments

The sequence are the terms in a triangle, where the rows correspond to the denominator of the rational number (starting with row 2, column 1) and the columns correspond to the numerators:
x = 1 2 3 4 5 Rationals x/y:
Row 1: (y=2) 6 1/2
Row 2: (y=3) 15, 5 1/3, 2/3
Row 3: (y=4) 22, 6, 3 1/4, 2/4, 3/4
Row 4: (y=5) 30, 9, 7, 2 1/5, 2/5, 3/5, 4/5
Row 5: (y=6) 45, 15, 6, 5, 1 1/6, 2/6, 3/6, 4/6, 5/6
Alternatively, order the rational numbers, x/y, 0 < x/y < 1, in this order: 1/2, 1/3, 2/3, 1/4, 2/4, 3/4, 1/5, 2/5, ... The numerators of the n-th rational number are A002260(n) and the denominators are A003057(n).

Examples

			The sixth rational number is 3/4;
  3/4 = 1/2 + 1/5 + 1/20
      = 1/2 + 1/6 + 1/12
      = 1/3 + 1/4 + 1/5,
so a(6)=3.
		

Crossrefs

Programs

  • PARI
    Efrac3(x,y)=sum(p=if(y%x,y\x,y\x+1),3*y\x, my(N=x/y-1/p); sum(q=max(if(numerator(N)==1,1\N+1,1\N),p+1),2\N, my(M=N-1/q,r=1/M); type(r)=="t_INT" && qCharles R Greathouse IV, Nov 09 2021

A227612 Table read by antidiagonals: Number of ways m/n can be expressed as the sum of three distinct unit fractions, i.e., m/n = 1/x + 1/y + 1/z satisfying 0 < x < y < z and read by antidiagonals.

Original entry on oeis.org

1, 0, 6, 0, 1, 15, 0, 1, 5, 22, 0, 0, 1, 6, 30, 0, 0, 1, 3, 9, 45, 0, 0, 1, 1, 7, 15, 36, 0, 0, 0, 2, 2, 6, 14, 62, 0, 0, 0, 1, 1, 5, 6, 22, 69, 0, 0, 0, 1, 1, 1, 5, 16, 21, 84, 0, 0, 0, 0, 1, 1, 3, 6, 15, 30, 56, 0, 0, 0, 0, 1, 4, 1, 5, 4, 15, 22, 142, 0, 0, 0, 0, 0, 1, 1, 3, 9, 9, 13, 45, 53
Offset: 1

Views

Author

Robert G. Wilson v, Jul 17 2013

Keywords

Comments

The main diagonal is 1, 1, 1, 1, 1, 1, 1, ..., ; i.e., 1 = 1/2 + 1/3 + 1/6.

Examples

			  m\n| 1  2   3   4   5   6   7   8   9  10  11   12  13   14   15
  ---+------------------------------------------------------------
   1 | 1  6  15  22  30  45  36  62  69  84  56  142  53  124  178  A227610
   2 | 0  1   5   6   9  15  14  22  21  30  22   45  17   36   72  A227611
   3 | 0  1   1   3   7   6   6  16  15  15  13   22   8   27   30  A075785
   4 | 0  0   1   1   2   5   5   6   4   9   7   15   4   14   33  A073101
   5 | 0  0   1   2   1   1   3   5   9   6   3   12   5   18   15  A075248
   6 | 0  0   0   1   1   1   1   3   5   7   5    6   1    6    9  n/a
   7 | 0  0   0   1   1   4   1   2   2   2   2    9   6    6    7  n/a
   8 | 0  0   0   0   1   1   1   1   1   2   0    5   3    5   15  n/a
   9 | 0  0   0   0   0   1   1   3   1   1   0    3   1    2    7  n/a
  10 | 0  0   0   0   0   1   0   2   2   1   0    1   1    3    5  n/a
.
Antidiagonals are {1}, {0, 6}, {0, 1, 15}, {0, 1, 5, 22}, {0, 0, 1, 6, 30}, {0, 0, 1, 3, 9, 45}, ...
		

Crossrefs

Cf. A002966, A073546, A227610 (1/n), A227611 (2/n), A075785 (3/n), A073101 (4/n), A075248 (5/n).

Programs

  • Mathematica
    f[m_, n_] := Length@ Solve[m/n == 1/x + 1/y + 1/z && 0 < x < y < z, {x, y, z}, Integers]; Table[ f[n, m - n + 1], {m, 12}, {n, m, 1, -1}]
Showing 1-4 of 4 results.