A227610 Number of ways 1/n can be expressed as the sum of three distinct unit fractions: 1/n = 1/x + 1/y + 1/z satisfying 0 < x < y < z.
1, 6, 15, 22, 30, 45, 36, 62, 69, 84, 56, 142, 53, 124, 178, 118, 67, 191, 74, 274, 227, 145, 87, 342, 146, 162, 216, 322, 100, 461, 84, 257, 304, 199, 435, 508, 79, 204, 360, 580, 115, 587, 98, 455, 618, 192, 129, 676, 217, 417, 369, 449, 119, 573, 543, 759, 367, 240, 166, 1236, 102, 261, 857, 428, 568, 717, 115, 537, 460, 1018, 155, 1126, 112, 276, 839
Offset: 1
Keywords
Examples
a(1)=1 because 1 = 1/2 + 1/3 + 1/6; a(2)=6 because 1/2 = 1/3 + 1/7 + 1/42 = 1/3 + 1/8 + 1/24 = 1/3 + 1/9 + 1/18 = 1/3 + 1/10 + 1/15 = 1/4 + 1/5 + 1/20 = 1/4 + 1/6 + 1/12; a(3)=15 because 1/3 = 1/x + 1/y + 1/z presented as {x,y,z}: {4,13,156}, {4,14,84}, {4,15,60}, {4,16,48}, {4,18,36}, {4,20,30}, {4,21,28}, {5,8,120}, {5,9,45}, {5,10,30}, {5,12,20}, {6,7,42}, {6,8,24}, {6,9,18}, {6,10,15}; etc.
Links
- Jud McCranie, Table of n, a(n) for n = 1..500
- Christian Elsholtz, Sums Of k Unit Fractions, Trans. Amer. Math. Soc. 353 (2001), 3209-3227.
- David Eppstein, Algorithms for Egyptian Fractions
- David Eppstein, Ten Algorithms for Egyptian Fractions, Wolfram Library Archive.
- Ron Knott, Egyptian Fractions
- Eric Weisstein's World of Mathematics, Egyptian Fraction
- Index entries for sequences related to Egyptian fractions
Crossrefs
Programs
-
Mathematica
f[n_] := Length@ Solve[1/n == 1/x + 1/y + 1/z && 0 < x < y < z, {x, y, z}, Integers]; Array[f, 70]
Comments