A053600
a(1) = 2; for n>=1, a(n+1) is the smallest palindromic prime with a(n) as a central substring.
Original entry on oeis.org
2, 727, 37273, 333727333, 93337273339, 309333727333903, 1830933372733390381, 92183093337273339038129, 3921830933372733390381293, 1333921830933372733390381293331, 18133392183093337273339038129333181
Offset: 1
As a triangle:
.........2
........727
.......37273
.....333727333
....93337273339
..309333727333903
1830933372733390381
- G. L. Honaker, Jr. and Chris K. Caldwell, Palindromic Prime Pyramids, J. Recreational Mathematics, Vol. 30(3) 169-176, 1999-2000.
- Clark Kimberling, Table of n, a(n) for n = 1..200
- P. De Geest, Palindromic Prime Pyramid Puzzle by G.L.Honaker,Jr
- G. L. Honaker, Jr. and Chris Caldwell, Prime Curios! 18133...33181 (35-digits)
- G. L. Honaker, Jr. & C. K. Caldwell, Palindromic Prime Pyramids
- G. L. Honaker, Jr. & C. K. Caldwell, Supplement to "Palindromic Prime Pyramids"
- Ivars Peterson, Primes, Palindromes, and Pyramids, Science News.
- Inder J. Taneja, Palindromic Prime Embedded Trees, RGMIA Res. Rep. Coll. 20 (2017), Art. 124.
- Inder J. Taneja, Same Digits Embedded Palprimes, RGMIA Research Report Collection (2018) Vol. 21, Article 75, 1-47.
-
d[n_] := IntegerDigits[n]; t = {x = 2}; Do[i = 1; While[! PrimeQ[y = FromDigits[Flatten[{z = d[i], d[x], Reverse[z]}]]], i++]; AppendTo[t, x = y], {n, 10}]; t (* Jayanta Basu, Jun 24 2013 *)
-
from gmpy2 import digits, mpz, is_prime
A053600_list, p = [2], 2
for _ in range(30):
m, ps = 1, digits(p)
s = mpz('1'+ps+'1')
while not is_prime(s):
m += 1
ms = digits(m)
s = mpz(ms+ps+ms[::-1])
p = s
A053600_list.append(int(p)) # Chai Wah Wu, Apr 09 2015
A110105
a(n) is the number of coverings of 1..n by cyclic words of length n, such that each value from 1 to n appears precisely 3 times. That is, the union of all the letters in all of the words of a given covering is the multiset {1,1,1,2,2,2,...,n,n,n}. Repeats of words are not allowed in a given covering.
Original entry on oeis.org
1, 1, 2, 12, 192, 5744, 260904, 16542648, 1395722688, 151232990208, 20468918305536, 3384387717897216, 671260382408564352, 157302245641224362112, 42996605332700377396992, 13558408172347636250832384, 4885584146166061652811300864, 1994958243661170192648338792448
Offset: 0
a(2)=2 because the two cyclic word coverings are {112, 221} and {111, 222}.
a(3)=12: {111 222 333} {111 223 233} {112 122 333} {112 133 223} {113 122 233} {113 123 223} {113 132 223} {112 132 233} {113 133 222} {122 123 133} {122 132 133} {112 123 233}.
-
RecurrenceTable[{-(-10+n) (-9+n) (-8+n) (-7+n) (-6+n) (-5+n) (-4+n) (-3+n) (-2+n) (-1+n) (-49-243 n+243 n^2) a[-11+n]-126 (-9+n) (-8+n) (-7+n) (-6+n) (-5+n) (-4+n) (-3+n) (-2+n) (-1+n) a[-10+n]-2 (-8+n) (-7+n) (-6+n) (-5+n) (-4+n) (-3+n) (-2+n) (-1+n) (-130-162 n+243 n^2) a[-9+n]+6 (-7+n) (-6+n) (-5+n) (-4+n) (-3+n) (-2+n) (-1+n) (196+1166 n-1458 n^2+243 n^3) a[-8+n]+3 (-6+n) (-5+n) (-4+n) (-3+n) (-2+n) (-1+n) (-931-117 n+243 n^2) a[-7+n]+54 (-5+n) (-4+n) (-3+n) (-2+n) (-1+n) (61-63 n+9 n^2) a[-6+n]-(-4+n) (-3+n) (-2+n) (-1+n) (-3686-21339 n+38682 n^2-17496 n^3+2187 n^4) a[-5+n]-18 (-3+n) (-2+n) (-1+n) (412+410 n-918 n^2+243 n^3) a[-4+n]+18 (-2+n) (-1+n) (14-1659 n+2867 n^2-1458 n^3+243 n^4) a[-3+n]-6 (-1+n) (-344+680 n-810 n^2+243 n^3) a[-2+n]-3 (118-2013 n+3984 n^2-2916 n^3+729 n^4) a[-1+n]+6 (437-729 n+243 n^2) a[n]==0, a[0]==1, a[1]==1, a[2]==2, a[3]==12, a[4]==192, a[5]==5744, a[6]==260904, a[7]==16542648, a[8]==1395722688, a[9]==151232990208, a[10]==20468918305536}, a, {n, 0, 20}] (* Vaclav Kotesovec, Feb 28 2016 *)
A256957
Smallest palindromic prime that generates a palindromic prime pyramid of height n.
Original entry on oeis.org
11, 131, 2, 5, 10301, 16361, 10281118201, 35605550653, 7159123219517, 17401539893510471, 3205657651567565023, 14736384418081448363741
Offset: 1
a(1) = 11.
a(4) = 5:
5
151
31513
3315133, stop;
height(5)=4.
a(6)=16362:
16361
1163611
311636113
33116361133
3331163611333
333311636113333, stop;
height(16361)=6.
Added a(10)-a(11) and corrected a(4) -
Chai Wah Wu, Apr 09 2015
A034276
Smallest prime that generates a prime pyramid of height n.
Original entry on oeis.org
11, 29, 2, 5, 41, 251, 43, 145577, 51941, 4372877, 26901631, 366636187, 15387286403, 218761753811, 3313980408469
Offset: 1
Example for p=43: 43 3433 334333 93343339 3933433393 939334333939 39393343339393, stop; height(43)=7.
A110106
a(n) is the number of coverings of 1..n by cyclic words of length 3n, such that each value from 1 to n appears precisely twice. That is, the union of all the letters in all of the words of a given covering is the multiset {1,1,2,2,...,n,n}. Repeats of words are allowed in a given covering.
Original entry on oeis.org
1, 6, 3960, 24151680, 577882166400, 38039350155206400, 5605398331566095462400, 1614162682147590619140096000, 824800497779996439355497811968000
Offset: 0
a(1)=6: {123, 132} {112, 233} {113, 322} {133, 122} {123, 123} {132, 132}.
-
RecurrenceTable[{(40320 + 328752*n + 78732*n^7 + 6561*n^8 + 1816668*n^3 + 1818369*n^4 + 1102248*n^5 + 398034*n^6 + 1063116*n^2) * a[n] + (-161280 - 508608*n - 453600*n^3 - 173340*n^4 - 34992*n^5 - 2916*n^6 - 661104*n^2) * a[n + 1] + (12432 + 20070*n + 12114*n^2 + 3240*n^3 + 324*n^4) * a[n + 2] - 2*a[n + 3] == 0, a[0] == 1, a[1] == 6, a[2] == 3960}, a, {n, 0, 15}] (* Vaclav Kotesovec, Oct 24 2023 *)
A376130
a(1) = 3; for n > 1, a(n) is the smallest palindromic prime containing exactly 3 more digits on each end than a(n-1), with a(n-1) as a central substring.
Original entry on oeis.org
3, 1003001, 1021003001201, 1211021003001201121, 1251211021003001201121521, 1211251211021003001201121521121, 1041211251211021003001201121521121401, 1081041211251211021003001201121521121401801, 1091081041211251211021003001201121521121401801901
Offset: 1
Showing 1-6 of 6 results.
Comments