cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A053600 a(1) = 2; for n>=1, a(n+1) is the smallest palindromic prime with a(n) as a central substring.

Original entry on oeis.org

2, 727, 37273, 333727333, 93337273339, 309333727333903, 1830933372733390381, 92183093337273339038129, 3921830933372733390381293, 1333921830933372733390381293331, 18133392183093337273339038129333181
Offset: 1

Views

Author

G. L. Honaker, Jr., Jan 20 2000

Keywords

Examples

			As a triangle:
.........2
........727
.......37273
.....333727333
....93337273339
..309333727333903
1830933372733390381
		

References

  • G. L. Honaker, Jr. and Chris K. Caldwell, Palindromic Prime Pyramids, J. Recreational Mathematics, Vol. 30(3) 169-176, 1999-2000.

Crossrefs

Programs

  • Mathematica
    d[n_] := IntegerDigits[n]; t = {x = 2}; Do[i = 1; While[! PrimeQ[y = FromDigits[Flatten[{z = d[i], d[x], Reverse[z]}]]], i++]; AppendTo[t, x = y], {n, 10}]; t (* Jayanta Basu, Jun 24 2013 *)
  • Python
    from gmpy2 import digits, mpz, is_prime
    A053600_list, p = [2], 2
    for _ in range(30):
        m, ps = 1, digits(p)
        s = mpz('1'+ps+'1')
        while not is_prime(s):
            m += 1
            ms = digits(m)
            s = mpz(ms+ps+ms[::-1])
        p = s
        A053600_list.append(int(p)) # Chai Wah Wu, Apr 09 2015

A110105 a(n) is the number of coverings of 1..n by cyclic words of length n, such that each value from 1 to n appears precisely 3 times. That is, the union of all the letters in all of the words of a given covering is the multiset {1,1,1,2,2,2,...,n,n,n}. Repeats of words are not allowed in a given covering.

Original entry on oeis.org

1, 1, 2, 12, 192, 5744, 260904, 16542648, 1395722688, 151232990208, 20468918305536, 3384387717897216, 671260382408564352, 157302245641224362112, 42996605332700377396992, 13558408172347636250832384, 4885584146166061652811300864, 1994958243661170192648338792448
Offset: 0

Views

Author

Marni Mishna, Jul 11 2005

Keywords

Comments

P-recursive.

Examples

			a(2)=2 because the two cyclic word coverings are {112, 221} and {111, 222}.
a(3)=12: {111 222 333} {111 223 233} {112 122 333} {112 133 223} {113 122 233} {113 123 223} {113 132 223} {112 132 233} {113 133 222} {122 123 133} {122 132 133} {112 123 233}.
		

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{-(-10+n) (-9+n) (-8+n) (-7+n) (-6+n) (-5+n) (-4+n) (-3+n) (-2+n) (-1+n) (-49-243 n+243 n^2) a[-11+n]-126 (-9+n) (-8+n) (-7+n) (-6+n) (-5+n) (-4+n) (-3+n) (-2+n) (-1+n) a[-10+n]-2 (-8+n) (-7+n) (-6+n) (-5+n) (-4+n) (-3+n) (-2+n) (-1+n) (-130-162 n+243 n^2) a[-9+n]+6 (-7+n) (-6+n) (-5+n) (-4+n) (-3+n) (-2+n) (-1+n) (196+1166 n-1458 n^2+243 n^3) a[-8+n]+3 (-6+n) (-5+n) (-4+n) (-3+n) (-2+n) (-1+n) (-931-117 n+243 n^2) a[-7+n]+54 (-5+n) (-4+n) (-3+n) (-2+n) (-1+n) (61-63 n+9 n^2) a[-6+n]-(-4+n) (-3+n) (-2+n) (-1+n) (-3686-21339 n+38682 n^2-17496 n^3+2187 n^4) a[-5+n]-18 (-3+n) (-2+n) (-1+n) (412+410 n-918 n^2+243 n^3) a[-4+n]+18 (-2+n) (-1+n) (14-1659 n+2867 n^2-1458 n^3+243 n^4) a[-3+n]-6 (-1+n) (-344+680 n-810 n^2+243 n^3) a[-2+n]-3 (118-2013 n+3984 n^2-2916 n^3+729 n^4) a[-1+n]+6 (437-729 n+243 n^2) a[n]==0, a[0]==1, a[1]==1, a[2]==2, a[3]==12, a[4]==192, a[5]==5744, a[6]==260904, a[7]==16542648, a[8]==1395722688, a[9]==151232990208, a[10]==20468918305536}, a, {n, 0, 20}] (* Vaclav Kotesovec, Feb 28 2016 *)

Formula

Differential equation satisfied by e.g.f.: {( - 6 + 12*t - 138*t^7 - 12*t^12 + 213*t^6 - 92*t^8 - 126*t^9 - 9*t^14 - 170*t^4 + 54*t^2 + 162*t^11 - 72*t^3 + 162*t^5 + 38*t^10)*F(t) + (6 + 54*t^12 + 72*t^4 + 126*t^3 + 54*t^6 - 324*t^9 - 156*t^8 - 42*t^2 - 18*t - 36*t^10 + 594*t^7 - 378*t^5)*(d/dt)F(t) + (-81*t^10 - 9*t^2 + 216*t^8 - 198*t^6 + 72*t^4)*(d^2/dt^2)F(t), F(0) = 1}.
Recurrence satisfied by a(n): {a(0) = 1, a(10) = 20468918305536, a(11) = 3384387717897216, a(12) = 671260382408564352, a(2) = 2, a(3) = 12, a(4) = 192, a(5) = 5744, a(6) = 260904, a(7) = 16542648, a(8) = 1395722688, a(9) = 151232990208, a(1) = 1, 0 = (3*n^12 + 618210450*n^5 + 20779902*n^7 + 4242044664*n^3 + 134970693*n^6 + 4459328640*n + 1971620508*n^4 + 1437004800 + 5794678656*n^2 + 234*n^11 + 8151*n^10 + 167310*n^9 + 2248389*n^8)*a(n) + (25151175*n^5 + 12450*n^8 + 3000165*n^6 + 1919851200*n + 143497300*n^4 + 549556500*n^3 + 1350370080*n^2 + 5*n^10 + 375*n^9 + 1197504000 + 240750*n^7)*a(n + 2) + (-116250876*n^5 - 18*n^10 - 12385923840*n - 711103032*n^4 - 2944635984*n^3 - 7897844736*n^2 - 8622028800 - 1404*n^9 - 48708*n^8 - 989496*n^7 - 13032306*n^6)*a(n + 3) + (-748*n^7 - 24541132*n^3 - 22022*n^6 - 3770459*n^4 - 98660628*n^2 - 219542400 - 366520*n^5 - 223906320*n - 11*n^8)*a(n + 4) + (240408*n^5 + 2653854*n^4 + 18626328*n^3 + 81157896*n^2 + 200675232*n + 215550720 + 6*n^8 + 432*n^7 + 13524*n^6)*a(n + 5) + (84272481*n^3 + 1083375*n^5 + 11978658*n^4 + 27*n^8 + 60885*n^6 + 914771880*n + 1944*n^7 + 987940800 + 368381790*n^2)*a(n + 6) + (6874416*n^2 + 26085888*n + 75330*n^4 + 961740*n^3 + 41057280 + 54*n^6 + 3132*n^5)*a(n + 7) + (-63*n^6 - 58045680 - 92897*n^4 - 1223139*n^3 - 9036160*n^2 - 35519268*n - 3753*n^5)*a(n + 8) + (-1188*n^2 - 13032*n - 47520 - 36*n^3)*a(n + 9) + (634392 + 232902*n + 45*n^4 + 32067*n^2 + 1962*n^3)*a(n + 10) + (-3024 - 540*n - 24*n^2)*a(n + 11) + (-9*n^2 - 1410 - 225*n)*a(n + 12) + 6*a(n + 13)}.
a(n) ~ 3^(n+1/2) * n^(2*n) / (2^n * exp(2*n)). - Vaclav Kotesovec, Feb 28 2016

Extensions

Original recurrence corrected by Vaclav Kotesovec, following a suggestion of Matthew House, Feb 28 2016
More terms from Vaclav Kotesovec, Feb 28 2016

A256957 Smallest palindromic prime that generates a palindromic prime pyramid of height n.

Original entry on oeis.org

11, 131, 2, 5, 10301, 16361, 10281118201, 35605550653, 7159123219517, 17401539893510471, 3205657651567565023, 14736384418081448363741
Offset: 1

Views

Author

Felice Russo, Jan 25 2000

Keywords

Comments

Start with a palindromic prime p; look for smallest palindromic prime that has previous term as a centered substring and has 2 more digits (i.e., one more digit at each end); repeat until no such palindromic prime can be found; then height(p) = number of rows in pyramid. Each row of pyramid must be the smallest prime that can be used. Then a(n) = smallest value of p that generates a pyramid of height n.

Examples

			a(1) = 11.
a(4) = 5:
5
151
31513
3315133, stop;
height(5)=4.
a(6)=16362:
16361
1163611
311636113
33116361133
3331163611333
333311636113333, stop;
height(16361)=6.
		

Crossrefs

Extensions

Added a(10)-a(11) and corrected a(4) - Chai Wah Wu, Apr 09 2015
Entry revised by N. J. A. Sloane, Apr 13 2015
a(12) from Michael S. Branicky, Oct 28 2024

A034276 Smallest prime that generates a prime pyramid of height n.

Original entry on oeis.org

11, 29, 2, 5, 41, 251, 43, 145577, 51941, 4372877, 26901631, 366636187, 15387286403, 218761753811, 3313980408469
Offset: 1

Views

Author

Felice Russo, Jan 25 2000

Keywords

Comments

Let p be prime; look for the smallest prime in {1|p|1, 3|p|3, 7|p|7, 9|p|9}, where '|' stands for concatenation; repeat until no such prime can be found; then height(p) = number of rows in pyramid.
a(13) > 10^10. - Donovan Johnson, Aug 13 2010

Examples

			Example for p=43: 43 3433 334333 93343339 3933433393 939334333939 39393343339393, stop; height(43)=7.
		

Crossrefs

Extensions

More terms from Naohiro Nomoto, Jul 14 2001
a(11)-a(12) from Donovan Johnson, Aug 13 2010
a(13) from Chai Wah Wu, Apr 10 2015
a(14)-a(15) from Giovanni Resta, May 15 2020

A110106 a(n) is the number of coverings of 1..n by cyclic words of length 3n, such that each value from 1 to n appears precisely twice. That is, the union of all the letters in all of the words of a given covering is the multiset {1,1,2,2,...,n,n}. Repeats of words are allowed in a given covering.

Original entry on oeis.org

1, 6, 3960, 24151680, 577882166400, 38039350155206400, 5605398331566095462400, 1614162682147590619140096000, 824800497779996439355497811968000
Offset: 0

Views

Author

Marni Mishna, Jul 11 2005

Keywords

Comments

P-recursive.

Examples

			a(1)=6: {123, 132} {112, 233} {113, 322} {133, 122} {123, 123} {132, 132}.
		

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{(40320 + 328752*n + 78732*n^7 + 6561*n^8 + 1816668*n^3 + 1818369*n^4 + 1102248*n^5 + 398034*n^6 + 1063116*n^2) * a[n] + (-161280 - 508608*n - 453600*n^3 - 173340*n^4 - 34992*n^5 - 2916*n^6 - 661104*n^2) * a[n + 1] + (12432 + 20070*n + 12114*n^2 + 3240*n^3 + 324*n^4) * a[n + 2] - 2*a[n + 3] == 0, a[0] == 1, a[1] == 6, a[2] == 3960}, a, {n, 0, 15}] (* Vaclav Kotesovec, Oct 24 2023 *)

Formula

Differential equation satisfied by F(t)=sum a(n) t^(3n)/(3n!) {F(0) = 1, (6*t^2-12*t^5+t^8)*F(t) + (-4*t^6-2+16*t^3)*(d/dt)F(t) + 4*t^4*(d^2/dt^2)F(t)};
recurrence satisfied by a(n): {(40320 + 328752*n + 78732*n^7 + 6561*n^8 + 1816668*n^3 + 1818369*n^4 + 1102248*n^5 + 398034*n^6 + 1063116*n^2)*a(n) + (-161280 - 508608*n - 453600*n^3 - 173340*n^4 - 34992*n^5 - 2916*n^6 - 661104*n^2)*a(n+1) + (12432 + 20070*n + 12114*n^2 + 3240*n^3 + 324*n^4)*a(n+2) - 2*a(n+3), a(1) = 6, a(0) = 1, a(2) = 3960}.
a(n) ~ 2^n * 3^(4*n + 1/2) * n^(4*n) / exp(4*n). - Vaclav Kotesovec, Oct 24 2023

A376130 a(1) = 3; for n > 1, a(n) is the smallest palindromic prime containing exactly 3 more digits on each end than a(n-1), with a(n-1) as a central substring.

Original entry on oeis.org

3, 1003001, 1021003001201, 1211021003001201121, 1251211021003001201121521, 1211251211021003001201121521121, 1041211251211021003001201121521121401, 1081041211251211021003001201121521121401801, 1091081041211251211021003001201121521121401801901
Offset: 1

Views

Author

Shyam Sunder Gupta, Sep 11 2024

Keywords

Comments

There are 27 terms in this sequence.

Crossrefs

Showing 1-6 of 6 results.