Marni Mishna has authored 22 sequences. Here are the ten most recent ones:
A374842
Number of 7-regular labeled graphs on 2n nodes.
Original entry on oeis.org
1, 0, 0, 0, 1, 286884, 480413921130, 1803595358964773088, 15138592322753242235338875, 271849772205948458085090804526392, 9883018890803233316233360724489799227748, 689121157937951859333538097288863665976145304960
Offset: 0
For example, for n=4, a(4)=1 indicates that there is a single 7-regular graph on 2n=8 vertices. Specifically, this is the complete graph.
Alternating terms of column k=7 of
A059441.
A304979
The nonzero terms of the cogrowth sequence of (Z/5Z)^*2 = * with respect to the generating set {(x,1), (1,y)}.
Original entry on oeis.org
1, 2, 12, 92, 792, 7302, 70464, 702536, 7178568, 74771570, 790906012, 8472417384, 91724327928, 1001987961834, 11030476949952, 122247789508992, 1362840516623944, 15272530735735338, 171946029518128956, 1943927810200670820, 22059590401383177792, 251183781609841838444
Offset: 0
-
terms = 22;
A[] = 0; Do[A[x] = (1 + 4 A[x] + 6 A[x]^2 + 4 A[x]^3 + A[x]^4 + 32 x A[x]^5)/(1 + A[x])^4 + O[x]^terms // Normal, {terms}];
CoefficientList[A[x], x] (* Jean-François Alcover, Nov 16 2018 *)
A192867
Number of set partitions of {1, ..., n} that avoid enhanced 7-crossings (or enhanced 7-nestings).
Original entry on oeis.org
1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678570, 4213597, 27644436, 190899266, 1382956734, 10480097431, 82863928963, 682058946982, 5832425824171, 51718812364549
Offset: 0
There are 27644437 partitions of 13 elements, but a(13)=27644436 because the partition {1,13}{2,12}{3,11}{4,10}{5,9}{6,8} {7} has an enhanced 7-nesting.
- M. Bousquet-Mélou and G. Xin, On partitions avoiding 3-crossings, math.CO/0506551.
- Sophie Burrill, Sergi Elizalde, Marni Mishna and Lily Yen, A generating tree approach to k-nonnesting partitions and permutations, arXiv preprint arXiv:1108.5615, 2011
- W. Chen, E. Deng, R. Du, R. P. Stanley, and C. Yan, Crossings and nestings of matchings and partitions, math.CO/0501230
A192866
Number of set partitions of {1, ..., n} that avoid enhanced 6-crossings (or enhanced 6-nestings).
Original entry on oeis.org
1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678569, 4213555, 27643388, 190878823, 1382610179, 10474709625, 82784673008, 680933897225, 5816811952612, 51505026270176
Offset: 0
There are 678570 partitions of 11 elements, but a(11)=678569 because the partition {1,11}{2,10}{3,9}{4,8}{5,9}{6} has an enhanced 6-nesting.
- M. Bousquet-Mélou and G. Xin, On partitions avoiding 3-crossings, math.CO/0506551.
- Sophie Burrill, Sergi Elizalde, Marni Mishna and Lily Yen, A generating tree approach to k-nonnesting partitions and permutations, arXiv preprint arXiv:1108.5615, 2011
- W. Chen, E. Deng, R. Du, R. P. Stanley, and C. Yan, Crossings and nestings of matchings and partitions, math.CO/0501230
A192865
Number of set partitions of {1,...,n} that avoid enhanced 5-crossings (or 5-nestings).
Original entry on oeis.org
1, 1, 2, 5, 15, 52, 203, 877, 4140, 21146, 115945, 678012, 4205209, 27531954, 189486817, 1365888674, 10278272450, 80503198320, 654544093035, 5511256984436, 47950929125540
Offset: 0
There are 21147 partitions of 9 elements, but a(9)=21146 because the partition {1,9}{2,8}{3,7}{4, 6}{5} has an enhanced 5-nesting.
- M. Bousquet-Mélou and G. Xin, On partitions avoiding 3-crossings, math.CO/0506551.
- Sophie Burrill, Sergi Elizalde, Marni Mishna and Lily Yen, A generating tree approach to k-nonnesting partitions and permutations, arXiv preprint arXiv:1108.5615, 2011
- W. Chen, E. Deng, R. Du, R. P. Stanley, and C. Yan, Crossings and nestings of matchings and partitions, math.CO/0501230
- Juan B. Gil, Jordan O. Tirrell, A simple bijection for classical and enhanced k-noncrossing partitions, arXiv:1806.09065 [math.CO], 2018. Also Discrete Mathematics (2019) Article 111705. doi:10.1016/j.disc.2019.111705
A192855
Number of set partitions of {1, ..., n} that avoid enhanced 4-crossings (or enhanced 4-nestings).
Original entry on oeis.org
1, 1, 2, 5, 15, 52, 203, 876, 4120, 20883, 113034, 648410, 3917021, 24785452, 163525976, 1120523114, 7947399981, 58172358642, 438300848329, 3391585460591, 26898763482122
Offset: 0
There are 877 partitions of 7 elements, but a(7)=51 because the partition {1,7}{2,6}{3,5}{4} has an enhanced 4-nesting.
- M. Bousquet-Mélou and G. Xin, On partitions avoiding 3-crossings, arXiv:math/0506551 [math.CO], 2005-2006.
- Sophie Burrill, Sergi Elizalde, Marni Mishna and Lily Yen, A generating tree approach to k-nonnesting partitions and permutations, arXiv preprint arXiv:1108.5615 [math.CO], 2011-2014.
- W. Chen, E. Deng, R. Du, R. P. Stanley, and C. Yan, Crossings and nestings of matchings and partitions, arXiv:math/0501230 [math.CO], 2005.
- Juan B. Gil and Jordan O. Tirrell, A simple bijection for classical and enhanced k-noncrossing partitions, arXiv:1806.09065 [math.CO], 2018-2023. Also Discrete Mathematics (2019) Article 111705, doi:10.1016/j.disc.2019.111705.
A192126
Number of set partitions of {1, ..., n} that avoid 5-nestings.
Original entry on oeis.org
1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115974, 678530, 4212654, 27627153, 190624976, 1378972826, 10425400681, 82139435907, 672674215928, 5712423473216, 50193986895328, 455436027242590, 4259359394306331
Offset: 0
There are 115975 partitions of 10 elements, but a(10)=115974 because the partition {1,10}{2,9}{3,8}{4,7}{5,6} has a 5-nesting.
- M. Bousquet-Mélou and G. Xin, On partitions avoiding 3-crossings, arXiv:math/0506551 [math.CO], 2005-2006.
- Sophie Burrill, Sergi Elizalde, Marni Mishna and Lily Yen, A generating tree approach to k-nonnesting partitions and permutations, arXiv preprint arXiv:1108.5615 [math.CO], 2011.
- W. Chen, E. Deng, R. Du, R. Stanley, and C. Yan, Crossings and nestings of matchings and partitions, arXiv:math/0501230 [math.CO], 2005.
- Juan B. Gil and Jordan O. Tirrell, A simple bijection for classical and enhanced k-noncrossing partitions, arXiv:1806.09065 [math.CO], 2018. Also Discrete Mathematics (2019) Article 111705. doi:10.1016/j.disc.2019.111705
- M. Mishna and L. Yen, Set partitions with no k-nesting, arXiv:1106.5036 [math.CO], 2011-2012.
A192128
Number of set partitions of {1, ..., n} that avoid 7-nestings.
Original entry on oeis.org
1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678570, 4213597, 27644437, 190899321, 1382958475, 10480139391, 82864788832, 682074818390, 5832698911490
Offset: 0
There are 190899322 partitions of 14 elements, but a(14)=190899321 because the partition {1,14}{2,13}{3,12}{4,11}{5,10}{6,9}{7,8} has a 7-nesting.
- M. Bousquet-Mélou and G. Xin, On partitions avoiding 3-crossings, arXiv:math/0506551 [math.CO], 2005-2006.
- Sophie Burrill, Sergi Elizalde, Marni Mishna and Lily Yen, A generating tree approach to k-nonnesting partitions and permutations, arXiv preprint arXiv:1108.5615 [math.CO], 2011.
- W. Chen, E. Deng, R. Du, R. Stanley, and C. Yan, Crossings and nestings of matchings and partitions, arXiv:math/0501230 [math.CO], 2005.
- M. Mishna and L. Yen, Set partitions with no k-nesting, arXiv:1106.5036 [math.CO], 2011-2012.
A192127
Number of set partitions of {1, ..., n} that avoid 6-nestings.
Original entry on oeis.org
1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678570, 4213596, 27644383, 190897649, 1382919174, 10479355676, 82850735298, 681840170501, 5828967784989, 51665915664913, 473990899143781, 4493642492511044, 43959218211619150
Offset: 0
There are 4213597 partitions of 12 elements, but a(12)=4213597 because the partition {1,12}{2,11}{3,10}{4,9}{5,8}{6,7} has a 6-nesting.
- M. Bousquet-Mélou and G. Xin, On partitions avoiding 3-crossings, arXiv:math/0506551 [math.CO], 2005-2006.
- Sophie Burrill, Sergi Elizalde, Marni Mishna and Lily Yen, A generating tree approach to k-nonnesting partitions and permutations, arXiv preprint arXiv:1108.5615 [math.CO], 2011.
- W. Chen, E. Deng, R. Du, R. Stanley, and C. Yan, Crossings and nestings of matchings and partitions, arXiv:math/0501230 [math.CO], 2005.
- M. Mishna and L. Yen, Set partitions with no k-nesting, arXiv:1106.5036 [math.CO], 2011-2012.
A108246
Number of labeled 2-regular graphs with no multiple edges, but loops are allowed (i.e., each vertex is endpoint of two (usual) edges or one loop).
Original entry on oeis.org
1, 1, 1, 2, 8, 38, 208, 1348, 10126, 86174, 819134, 8604404, 98981944, 1237575268, 16710431992, 242337783032, 3756693451772, 61991635990652, 1084943597643964, 20072853005524696, 391443701509660096, 8024999955144721256, 172544980412641191776
Offset: 0
a(3) = 2: {(1,2) (2,3) (1,3)}, {(1,1) (2,2) (3,3)}.
-
b:= proc(n) option remember; if n=0 then 1 elif n<3 then 0 else (n-1) *(b(n-1) +b(n-3) *(n-2)/2) fi end: a:= proc(n) add(b(k) *binomial(n,k), k=0..n) end: seq(a(n), n=0..30); # Alois P. Heinz, Sep 12 2008
-
CoefficientList[Series[E^(-x^2/4+x/2)/Sqrt[1-x], {x, 0, 20}], x]* Table[n!, {n, 0, 20}] (* Vaclav Kotesovec, Oct 17 2012 *)
Comments