cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Marni Mishna

Marni Mishna's wiki page.

Marni Mishna has authored 22 sequences. Here are the ten most recent ones:

A374842 Number of 7-regular labeled graphs on 2n nodes.

Original entry on oeis.org

1, 0, 0, 0, 1, 286884, 480413921130, 1803595358964773088, 15138592322753242235338875, 271849772205948458085090804526392, 9883018890803233316233360724489799227748, 689121157937951859333538097288863665976145304960
Offset: 0

Author

Marni Mishna, Jul 23 2024

Keywords

Comments

These entries are generated by a linear recurrence.

Examples

			For example, for n=4, a(4)=1 indicates that there is a single 7-regular graph on 2n=8 vertices. Specifically, this is the complete graph.
		

Crossrefs

Alternating terms of column k=7 of A059441.
Cf. A165628 (unlabeled case).

A304979 The nonzero terms of the cogrowth sequence of (Z/5Z)^*2 = * with respect to the generating set {(x,1), (1,y)}.

Original entry on oeis.org

1, 2, 12, 92, 792, 7302, 70464, 702536, 7178568, 74771570, 790906012, 8472417384, 91724327928, 1001987961834, 11030476949952, 122247789508992, 1362840516623944, 15272530735735338, 171946029518128956, 1943927810200670820, 22059590401383177792, 251183781609841838444
Offset: 0

Author

Marni Mishna, May 22 2018

Keywords

Comments

The number of paths on the Cayley graph of ((Z/5Z)^*2, {(x,1), (1,y)} which start and end at the identity.
a(n) is the number of words of length 5n over the alphabet {x,y} that reduce to the empty string upon iteratively removing factors of x^5 and y^5. For n=2, the a(2)=12 words of length 10 that reduce to the empty string are x^10, y^10, x^i y^5 x^(5-i), for i=1..5, and y^i x^5 y^(5-i), for i=1..5.

Crossrefs

Related cogrowth sequences (Z/2Z)^*2: A126869; (Z/3Z)^*2: A047098; (Z/4Z)^*2: A107026.

Programs

  • Mathematica
    terms = 22;
    A[] = 0; Do[A[x] = (1 + 4 A[x] + 6 A[x]^2 + 4 A[x]^3 + A[x]^4 + 32 x A[x]^5)/(1 + A[x])^4 + O[x]^terms // Normal, {terms}];
    CoefficientList[A[x], x] (* Jean-François Alcover, Nov 16 2018 *)

Formula

G.f.: A(x) satisfies 32*x*A(x)^5 - (A(x)-1)*(A(x)+1)^4 = 0.
a(n) satisfies the recurrence (2120000*(5*n+1))*(5*n+2)*(5*n+3)*(5*n+4)*a(n) + (250*(160980199*n^4 + 1129209134*n^3 + 2872721885*n^2 + 3155706646*n + 1267579560))*a(n+1) - (50*(109722203*n^4 + 959367613*n^3 + 3144281425*n^2 + 4572924587*n + 2485585548))*a(n+2) + (60*(4290021*n^4 + 51502996*n^3 + 243316306*n^2 + 532456081*n + 451079946))*a(n+3) - (3*(2673299*n^4 + 44756419*n^3 + 283571239*n^2 + 805783469*n + 866093430))*a(n+4) + (4008*(n+5))*(4*n+17)*(2*n+9)*(4*n+19)*a(n+5) = 0.
a(n) ~ 5^(5*n + 1/2) / (9 * sqrt(Pi) * n^(3/2) * 2^(8*n - 3/2)). - Vaclav Kotesovec, Oct 24 2023
a(n) = binomial(5*n,n) - 3 * Sum_{k=0..n-1} binomial(5*n,k). - Seiichi Manyama, Apr 05 2024

A192867 Number of set partitions of {1, ..., n} that avoid enhanced 7-crossings (or enhanced 7-nestings).

Original entry on oeis.org

1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678570, 4213597, 27644436, 190899266, 1382956734, 10480097431, 82863928963, 682058946982, 5832425824171, 51718812364549
Offset: 0

Author

Marni Mishna, Jul 11 2011

Keywords

Examples

			There are 27644437 partitions of 13 elements, but a(13)=27644436 because the partition {1,13}{2,12}{3,11}{4,10}{5,9}{6,8} {7} has an enhanced 7-nesting.
		

Crossrefs

A192866 Number of set partitions of {1, ..., n} that avoid enhanced 6-crossings (or enhanced 6-nestings).

Original entry on oeis.org

1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678569, 4213555, 27643388, 190878823, 1382610179, 10474709625, 82784673008, 680933897225, 5816811952612, 51505026270176
Offset: 0

Author

Marni Mishna, Jul 11 2011

Keywords

Examples

			There are 678570 partitions of 11 elements, but a(11)=678569 because the partition {1,11}{2,10}{3,9}{4,8}{5,9}{6} has an enhanced 6-nesting.
		

Crossrefs

A192865 Number of set partitions of {1,...,n} that avoid enhanced 5-crossings (or 5-nestings).

Original entry on oeis.org

1, 1, 2, 5, 15, 52, 203, 877, 4140, 21146, 115945, 678012, 4205209, 27531954, 189486817, 1365888674, 10278272450, 80503198320, 654544093035, 5511256984436, 47950929125540
Offset: 0

Author

Marni Mishna, Jul 11 2011

Keywords

Examples

			There are 21147 partitions of 9 elements, but a(9)=21146 because the partition {1,9}{2,8}{3,7}{4, 6}{5} has an enhanced 5-nesting.
		

Crossrefs

A192855 Number of set partitions of {1, ..., n} that avoid enhanced 4-crossings (or enhanced 4-nestings).

Original entry on oeis.org

1, 1, 2, 5, 15, 52, 203, 876, 4120, 20883, 113034, 648410, 3917021, 24785452, 163525976, 1120523114, 7947399981, 58172358642, 438300848329, 3391585460591, 26898763482122
Offset: 0

Author

Marni Mishna, Jul 11 2011

Keywords

Examples

			There are 877 partitions of 7 elements, but a(7)=51 because the partition {1,7}{2,6}{3,5}{4} has an enhanced 4-nesting.
		

Crossrefs

A192126 Number of set partitions of {1, ..., n} that avoid 5-nestings.

Original entry on oeis.org

1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115974, 678530, 4212654, 27627153, 190624976, 1378972826, 10425400681, 82139435907, 672674215928, 5712423473216, 50193986895328, 455436027242590, 4259359394306331
Offset: 0

Author

Marni Mishna, Jun 23 2011

Keywords

Comments

a(n) is also equal to the number of set partitions of {1, ..., n} that avoid 5-crossings.

Examples

			There are 115975 partitions of 10 elements, but a(10)=115974 because the partition {1,10}{2,9}{3,8}{4,7}{5,6} has a 5-nesting.
		

Crossrefs

A192128 Number of set partitions of {1, ..., n} that avoid 7-nestings.

Original entry on oeis.org

1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678570, 4213597, 27644437, 190899321, 1382958475, 10480139391, 82864788832, 682074818390, 5832698911490
Offset: 0

Author

Marni Mishna, Jun 23 2011

Keywords

Comments

This is equal to the number of set partitions of {1, ..., n} that avoid 7-crossings.
The first 14 terms coincide with terms of A000110. Without avoidance of 7-crossings, the two sequences would be identical. [Alexander R. Povolotsky, Sep 19 2011]

Examples

			There are 190899322 partitions of 14 elements, but a(14)=190899321 because the partition {1,14}{2,13}{3,12}{4,11}{5,10}{6,9}{7,8} has a 7-nesting.
		

Crossrefs

Cf. A000110.

A192127 Number of set partitions of {1, ..., n} that avoid 6-nestings.

Original entry on oeis.org

1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678570, 4213596, 27644383, 190897649, 1382919174, 10479355676, 82850735298, 681840170501, 5828967784989, 51665915664913, 473990899143781, 4493642492511044, 43959218211619150
Offset: 0

Author

Marni Mishna, Jun 23 2011

Keywords

Comments

This is equal to the number of set partitions of {1, ..., n} that avoid 6-crossings.

Examples

			There are 4213597 partitions of 12 elements, but a(12)=4213597 because the partition {1,12}{2,11}{3,10}{4,9}{5,8}{6,7} has a 6-nesting.
		

Crossrefs

A108246 Number of labeled 2-regular graphs with no multiple edges, but loops are allowed (i.e., each vertex is endpoint of two (usual) edges or one loop).

Original entry on oeis.org

1, 1, 1, 2, 8, 38, 208, 1348, 10126, 86174, 819134, 8604404, 98981944, 1237575268, 16710431992, 242337783032, 3756693451772, 61991635990652, 1084943597643964, 20072853005524696, 391443701509660096, 8024999955144721256, 172544980412641191776
Offset: 0

Author

Marni Mishna, Jun 17 2005

Keywords

Examples

			a(3) = 2: {(1,2) (2,3) (1,3)}, {(1,1) (2,2) (3,3)}.
		

Crossrefs

Binomial transform of A001205.
Row sums of A144161. - Alois P. Heinz, Jun 01 2009

Programs

  • Maple
    b:= proc(n) option remember; if n=0 then 1 elif n<3 then 0 else (n-1) *(b(n-1) +b(n-3) *(n-2)/2) fi end: a:= proc(n) add(b(k) *binomial(n,k), k=0..n) end: seq(a(n), n=0..30);  # Alois P. Heinz, Sep 12 2008
  • Mathematica
    CoefficientList[Series[E^(-x^2/4+x/2)/Sqrt[1-x], {x, 0, 20}], x]* Table[n!, {n, 0, 20}] (* Vaclav Kotesovec, Oct 17 2012 *)

Formula

Linear recurrence satisfied by a(n): {a(2) = 1, a(0) = 1, (-n^2 - 3*n - 2)*a(n) + (4 + 2*n)*a(n+1) + (-2*n-6)*a(n+2) + 2*a(n+3), a(1) = 1}.
E.g.f.: exp(-t^2/4 + t/2)/sqrt(1-t). - Vladeta Jovovic, Aug 14 2006
a(n) ~ sqrt(2)*n^n/exp(n-1/4). - Vaclav Kotesovec, Oct 17 2012

Extensions

More terms from Alois P. Heinz, Sep 12 2008