cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A144161 Triangle read by rows: T(n,k) = number of simple graphs on n labeled nodes with k edges that are node-disjoint unions of undirected cycle subgraphs.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 4, 3, 1, 0, 0, 10, 15, 12, 1, 0, 0, 20, 45, 72, 70, 1, 0, 0, 35, 105, 252, 490, 465, 1, 0, 0, 56, 210, 672, 1960, 3720, 3507, 1, 0, 0, 84, 378, 1512, 5880, 16740, 31563, 30016, 1, 0, 0, 120, 630, 3024, 14700, 55800, 157815, 300160, 286884
Offset: 0

Views

Author

Alois P. Heinz, Sep 12 2008

Keywords

Examples

			T(4,3) = 4, because there are 4 simple graphs with 3 edges that are node-disjoint unions of undirected cycle subgraphs:
  .1.2. .1.2. .1-2. .1-2.
  ../|. .|\.. ..\|. .|/..
  .3-4. .3-4. .3.4. .3.4.
T(6,6) = C(6,3)/2+5!/2 = 70.
Triangle begins:
  1;
  1, 0;
  1, 0, 0;
  1, 0, 0,  1;
  1, 0, 0,  4,  3;
  1, 0, 0, 10, 15, 12;
  1, 0, 0, 20, 45, 72, 70;
  ...
		

Crossrefs

Columns k=0, 1+2, 3-4 give: A000012, A000004, A000292, A050534.
Main diagonal gives A001205.
Row sums give: A108246.

Programs

  • Maple
    T:= proc(n,k) option remember; local i,j; if k=0 then 1 elif k<0 or n
    				
  • Mathematica
    T[n_, k_] := T[n, k] = Module[{i, j}, If[k == 0, 1, If[k < 0 || n < k, 0, T[n - 1, k] + Sum[Product[n - i, {i, 1, j}]*T[n - 1 - j, k - j - 1], {j, 2, k}]/2 ]]]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 27 2013, translated from Maple *)
  • Python
    from sympy.core.cache import cacheit
    from operator import mul
    from functools import reduce
    @cacheit
    def T(n, k): return 1 if k==0 else 0 if k<0 or nIndranil Ghosh, Aug 07 2017

Formula

T(n,0) = 1, T(n,k) = 0 if k<0 or n

A110039 Number of 3-regular labeled graphs on 2n vertices with no multiple edges, but loops are allowed. (3-regular = trivalent and a loop incident on a vertex counts as two edges.)

Original entry on oeis.org

1, 1, 8, 730, 188790, 102737670, 102172297920, 167870491048260, 423971126389110300, 1559445481095305703900, 8010574937878696134151200, 55572909620219147733302926200, 506607333530572584517841616582600, 5931728848766374810152582924943605000
Offset: 0

Author

Marni Mishna, Jul 08 2005

Keywords

Comments

Also the same as n X n symmetric matrices with {0,2}-entries on the diagonal and entries from {0,1} elsewhere, with row sum equal to 3.

Examples

			a(1)=1: {(1,1), (1,2), (2,2)}
		

References

  • Goulden, I. P.; Jackson, D. M. Labelled graphs with small vertex degrees and $P$-recursiveness. SIAM J. Algebraic Discrete Methods 7(1986), no. 1, 60--66. MR0819706 (87k:05093)

Crossrefs

Programs

  • Mathematica
    max = 30; f[x_] := Sum[a[n]*(x^n/n!), {n, 0, max}]; a[0] = 1; a[1] = 1; coef = CoefficientList[ 9*x^3*(x^4 - 2)*f''[x] + 3*(x^10 - 2*x^8 - 5*x^6 - 18*x^2 + 8)*f'[x] - x*(x^4 - 4*x^2 + 2)*(x^6 - 2*x^2 + 12)*f[x], x]; Table[a[n], {n, 0, max, 2}]/. Solve[Thread[coef[[2 ;; max]] == 0]][[1]] (* Vaclav Kotesovec, Sep 15 2014 *)

Formula

Differential equation satisfied by the e.g.f. F(t) = sum_n a(n)/2n! t^n: {F(0) = 1, (-t^5+4*t^4+52*t-20*t^2-24)*F(t) + (-144*t+48-12*t^3-12*t^4+6*t^5)*(d/dt)F(t) + (36*t^4-72*t^2)*(d^2/dt^2)F(t)}.
Recurrence: {(123200*n^9 + 30135960*n + 8448*n^10 + 256*n^11 + 105258076*n^3 + 4989600 + 53358140*n^5 + 75458988*n^2 + 91991460*n^4 + 21100464*n^6 + 5718768*n^7 + 1045440*n^8)*a(n) + (-24948000 - 12736*n^9 - 90804600*n - 384*n^10 - 134879084*n^3 - 32082204*n^5 - 145393020*n^2 - 80308236*n^4 - 8713656*n^6 - 1589856*n^7 - 186624*n^8)*a(n + 1) + (11840760*n + 6932520*n^3 + 4989600 + 544320*n^5 + 12084468*n^2 + 2446668*n^4 + 74592*n^6 + 5760*n^7 + 192*n^8)*a(n + 2) + (-1108800 - 2428000*n - 1014166*n^3 - 44740*n^5 - 2148828*n^2 - 278430*n^4 - 3912*n^6 - 144*n^7)*a(n + 3) + (-6435 - 3887*n - 780*n^2 - 52*n^3)*a(n + 4) + (3003 + 1635*n + 297*n^2 + 18*n^3)*a(n + 5) - 3*a(n + 6)}.
Goulden and Jackson give a differential equation satisfied by the e.g.f, which presumably agrees with the above. - N. J. A. Sloane, Sep 02 2013
Recurrence (for n > 5): 3*(9*n^2 - 27*n + 16)*a(n) = 3*(2*n - 1)*(27*n^4 - 108*n^3 + 138*n^2 - 63*n + 4)*a(n-1) - (n-1)*(2*n - 3)*(2*n - 1)*(3*n - 4)*(18*n^2 - 27*n - 13)*a(n-2) + 2*(n-2)*(n-1)*(2*n - 5)*(2*n - 3)*(2*n - 1)*(27*n^3 - 90*n^2 + 57*n + 8)*a(n-3) - 2*(n-3)*(n-2)*(n-1)*(2*n - 7)*(2*n - 5)*(2*n - 3)*(2*n - 1)*(9*n^2 - 9*n - 2)*a(n-4). - Vaclav Kotesovec, Sep 15 2014
a(n) ~ sqrt(2) * 6^n * n^(3*n) / exp(3*n). - Vaclav Kotesovec, Sep 15 2014

Extensions

More terms from Vaclav Kotesovec, Sep 15 2014

A333158 Irregular triangle read by rows: T(n,k) is the number of k-regular graphs on n labeled nodes with loops allowed, n >= 1, 0 <= k <= n + 1.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 1, 1, 0, 2, 0, 1, 1, 3, 8, 8, 3, 1, 1, 0, 38, 0, 38, 0, 1, 1, 15, 208, 730, 730, 208, 15, 1, 1, 0, 1348, 0, 20670, 0, 1348, 0, 1, 1, 105, 10126, 188790, 781578, 781578, 188790, 10126, 105, 1, 1, 0, 86174, 0, 37885204, 0, 37885204, 0, 86174, 0, 1
Offset: 1

Author

Andrew Howroyd, Mar 09 2020

Keywords

Comments

A loop adds 2 to the degree of its vertex.

Examples

			Triangle begins:
  1,   0,     1;
  1,   1,     1,      1;
  1,   0,     2,      0,      1;
  1,   3,     8,      8,      3,      1;
  1,   0,    38,      0,     38,      0,      1;
  1,  15,   208,    730,    730,    208,     15,     1;
  1,   0,  1348,      0,  20670,      0,   1348,     0,   1;
  1, 105, 10126, 188790, 781578, 781578, 188790, 10126, 105, 1;
  ...
		

Crossrefs

Row sums are A322635.
Columns k=0..4 are A000012, A123023, A108246, A110039 (with interspersed zeros), A228697.

Formula

T(n,k) = T(n, n+1-k).
Showing 1-3 of 3 results.