Original entry on oeis.org
2, 11, 101, 181, 18181, 1008001, 1022201, 1055501, 1082801, 1085801, 1180811, 1208021, 1221221, 1250521, 1280821, 1508051, 1520251, 1551551, 1580851, 1802081, 1805081, 1880881, 1881881, 100111001, 100888001, 108101801
Offset: 1
A134996
Dihedral calculator primes: p, p upside down, p in a mirror, p upside-down-and-in-a-mirror are all primes.
Original entry on oeis.org
2, 5, 11, 101, 181, 1181, 1811, 18181, 108881, 110881, 118081, 120121, 121021, 121151, 150151, 151051, 151121, 180181, 180811, 181081, 188011, 188801, 1008001, 1022201, 1028011, 1055501, 1058011, 1082801, 1085801, 1088081, 1108201, 1108501, 1110881, 1120121, 1120211
Offset: 1
120121 is such a number because 120121, 121021 (upside down), 151051 (mirror) and 150151 are all prime. (This is the smallest one in which all four numbers are distinct.)
-
lst1={2,5};
startQ[n_]:=First[IntegerDigits[n]]==1;
subQ[n_]:=Module[{lst={0,1,2,5,8}},SubsetQ[lst,Union[IntegerDigits[n]]]];
rev[n_]:=Reverse[IntegerDigits[n]];
updown[n_]:=FromDigits[rev[n]];
mirror[n_]:=FromDigits[rev[n]/.{2-> 5,5-> 2}];
updownmirror[n_]:=FromDigits[rev[mirror[n]]];
lst2=Select[Range@188801,And[startQ[#],subQ[#],PrimeQ[#],PrimeQ[updown[#]],PrimeQ[mirror[#]],PrimeQ[updownmirror[#]]]&];
Join[lst1,lst2] (* Ivan N. Ianakiev, Oct 08 2015 *)
-
from sympy import isprime
from itertools import count, islice, product
def t(s): return s.translate({ord("2"):ord("5"), ord("5"):ord("2")})
def ok(s): # s is a string of digits
return all(isprime(int(w)) for w in [s, s[::-1], t(s), t(s[::-1])])
def agen(): # generator of terms
yield from (2, 5)
for d in count(2):
for mid in product("01258", repeat=d-2):
s = "1" + "".join(mid) + "1"
if ok(s): yield int(s)
print(list(islice(agen(), 35))) # Michael S. Branicky, Apr 27 2024
Showing 1-2 of 2 results.
Comments