Mike Keith has authored 31 sequences. Here are the ten most recent ones:
A374380
Numbers b such that the base-b expansion of Pi has two equal digits immediately after the radix point.
Original entry on oeis.org
2, 8, 114, 227, 340, 453, 566, 679, 33103, 66318, 265382, 1360121, 1725034, 25510583, 78256780, 209259756, 340262732, 1151791170, 1963319608, 6701487260, 13402974519, 20104461778, 26805949037, 33507436296, 40208923555, 46910410814, 53611898073, 574364584668
Offset: 1
2 is a term since Pi in base 2 is 11.00... which has two equal digits 0,0.
114 is a term since Pi in base 114 is 3.(16)(16)... which has two equal "digits" 16 and 16.
Cf.
A000796 (Pi),
A336017 (second digit after radix point),
A002486 (continued fraction convergent denominators).
A134996
Dihedral calculator primes: p, p upside down, p in a mirror, p upside-down-and-in-a-mirror are all primes.
Original entry on oeis.org
2, 5, 11, 101, 181, 1181, 1811, 18181, 108881, 110881, 118081, 120121, 121021, 121151, 150151, 151051, 151121, 180181, 180811, 181081, 188011, 188801, 1008001, 1022201, 1028011, 1055501, 1058011, 1082801, 1085801, 1088081, 1108201, 1108501, 1110881, 1120121, 1120211
Offset: 1
120121 is such a number because 120121, 121021 (upside down), 151051 (mirror) and 150151 are all prime. (This is the smallest one in which all four numbers are distinct.)
-
lst1={2,5};
startQ[n_]:=First[IntegerDigits[n]]==1;
subQ[n_]:=Module[{lst={0,1,2,5,8}},SubsetQ[lst,Union[IntegerDigits[n]]]];
rev[n_]:=Reverse[IntegerDigits[n]];
updown[n_]:=FromDigits[rev[n]];
mirror[n_]:=FromDigits[rev[n]/.{2-> 5,5-> 2}];
updownmirror[n_]:=FromDigits[rev[mirror[n]]];
lst2=Select[Range@188801,And[startQ[#],subQ[#],PrimeQ[#],PrimeQ[updown[#]],PrimeQ[mirror[#]],PrimeQ[updownmirror[#]]]&];
Join[lst1,lst2] (* Ivan N. Ianakiev, Oct 08 2015 *)
-
from sympy import isprime
from itertools import count, islice, product
def t(s): return s.translate({ord("2"):ord("5"), ord("5"):ord("2")})
def ok(s): # s is a string of digits
return all(isprime(int(w)) for w in [s, s[::-1], t(s), t(s[::-1])])
def agen(): # generator of terms
yield from (2, 5)
for d in count(2):
for mid in product("01258", repeat=d-2):
s = "1" + "".join(mid) + "1"
if ok(s): yield int(s)
print(list(islice(agen(), 35))) # Michael S. Branicky, Apr 27 2024
A057679
Self-locating strings within Pi: numbers n such that the string n is at position n in the decimal digits of Pi, where 3 is the first digit.
Original entry on oeis.org
5, 242424, 271070, 9292071, 29133316, 70421305, 215817165252, 649661007154
Offset: 1
5 is a term because 5 is the 5th digit of Pi (3.1415...).
-
StringsinPi[m_] := Module[{cc = 10^m + m, sol, aa}, sol = Partition[RealDigits[Pi,10,cc] // First, m, 1]; Do[aa = FromDigits[sol[[i]]]; If[aa==i, Print[{i, aa}]], {i,Length[sol]}];] (* For example, StringsinPi[6] returns all 6-digit members of the sequence. - Colin Rose, Mar 15 2006 *)
dpi = RealDigits[Pi, 10, 10000010][[1]]; Select[Range[10000000], FromDigits[Take[dpi, {#, # - 1 + IntegerLength[#]}]] == # &] (* Vaclav Kotesovec, Feb 18 2020 *)
A058760
Integers whose set of prime factors (taken with multiplicity) uses each digit exactly once (i.e., is pandigital) in some base b > 1. Numbers are expressed in base 10.
Original entry on oeis.org
2, 6, 11, 19, 38, 174, 190, 230, 365, 377, 417, 445, 485, 493, 537, 553, 565, 606, 681, 721, 813, 869, 1133, 1313, 1717, 2866, 3946, 4546, 5631, 5662, 5811, 6322, 6351, 6711, 6730, 6855, 7971
Offset: 0
19 in base 3 is 201, which is pandigital, so it qualifies (having just itself as a prime factor). A more elaborate example is 5662 = 2 * 19 * 149, which in base 6 is 2 * 31 * 405, also pandigital.
A058909
Integers whose set of prime factors (taken with multiplicity) uses each digit exactly once (i.e., is pandigital) in base 10.
Original entry on oeis.org
15618090, 22022490, 22816290, 22908090, 23294190, 23507490, 26679990, 27114690, 27687090, 28275690, 29447898, 29544690, 29582490, 29670378, 29910138, 30134238, 30426918, 31207890, 31406910, 31430670, 31490610, 32024670, 32035470, 32054910
Offset: 1
15618090 is in the sequence since 2 * 3 * 5 * 487 * 1069 is pandigital; 29447898 because 2 * 3 * 107 * 45869 is pandigital.
A057680
Self-locating strings within Pi: numbers n such that the string n is at position n in the decimal digits of Pi, where the initial digit 3 is at position 0.
Original entry on oeis.org
1, 16470, 44899, 79873884, 711939213, 36541622473, 45677255610, 62644957128, 656430109694
Offset: 1
1 is a term because the string of digits '1' occurs as the 1st digit after the decimal point.
Similarly, 16470 is a term because the string of digits '16470' occurs starting at position 16470 (after the decimal point) in the digits of Pi (although it already occurs earlier at position 1602). - _M. F. Hasler_, Jul 29 2024
- Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 60.
Cf.
A000796 (decimal digits of Pi),
A057679 (variant where position 1 refers to the initial digit 3),
A064810 (variant where position 0 refers to the first digit after the decimal point),
A109513 (variant using chunks of m digits).
-
StringsinPiAfterPoint[m_] := Module[{cc = 10^m + m, sol, aa}, sol = Partition[RealDigits[Pi,10,cc] // First // Rest, m, 1]; Do[aa = FromDigits[sol[[i]]]; If[aa==i, Print[{i, aa}]], {i,Length[sol]}];] (* For example, StringsinPiAfterPoint[5] returns all 5-digit members of the sequence. - Colin Rose, Mar 15 2006 *)
Do[If[RealDigits[Pi,10,a=i+IntegerLength@i-1,-1][[1,i;;a]]==IntegerDigits@i,Print@i],{i,50000}] (* Giorgos Kalogeropoulos, Feb 21 2020 *)
-
A057680_row(r=5)={my(M=10^r, R=[]); for(n=M\10, M-1, localprec(n+r); Pi\10^(1-r-n)%M==n && !print1(n",") && R=concat(R,n));R} \\ prints & returns the r-digit terms. - M. F. Hasler, Jul 29 2024
A055055
Number of basic magic carpets on n points.
Original entry on oeis.org
1, 10, 271, 36995
Offset: 5
- E. Friedman and M. Keith, Magic Carpets, J. Int Sequences, 3 (2000), #P.00.2.5.
A055056
Number of smooth basic magic carpets on n points.
Original entry on oeis.org
1, 1, 7, 55, 1306
Offset: 5
- E. Friedman and M. Keith, Magic Carpets, J. Int Sequences, 3 (2000), #P.00.2.5.
A055057
Largest k value that admits an (n,k) smooth magic carpet.
Original entry on oeis.org
3, 3, 8, 14, 15
Offset: 5
- E. Friedman and M. Keith, Magic Carpets, J. Int Sequences, 3 (2000), #P.00.2.5.
A055605
Number of balanced basic magic carpets on n points.
Original entry on oeis.org
- E. Friedman and M. Keith, Magic Carpets, J. Int Sequences, 3 (2000), #P.00.2.5.
Comments