cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A038136 Erroneous version of A134996.

Original entry on oeis.org

2, 11, 101, 181, 1181, 1811, 18181, 108881, 110881, 118081, 120121, 121021, 121151, 150151, 151051, 151121, 180181, 180811, 181081, 188011, 188801, 1008001, 1022201, 1028011, 1055501, 1058011, 1082801, 1085801, 1088081
Offset: 1

Views

Author

Keywords

A134997 Number of dihedral primes with n digits.

Original entry on oeis.org

2, 1, 2, 2, 1, 14, 40, 52, 228, 482, 1592, 4758, 15810, 53202, 197429, 725196
Offset: 1

Views

Author

Keywords

Crossrefs

Extensions

a(1) corrected by Patrick Capelle, Feb 06 2008
a(11)-a(16) from Hiroaki Yamanouchi, Sep 04 2014

A134998 Dihedral palindromic primes.

Original entry on oeis.org

2, 5, 11, 101, 181, 18181, 1008001, 1022201, 1055501, 1082801, 1085801, 1180811, 1208021, 1221221, 1250521, 1280821, 1508051, 1520251, 1551551, 1580851, 1802081, 1805081, 1880881, 1881881, 100111001, 100888001, 108101801
Offset: 1

Views

Author

Keywords

Crossrefs

Extensions

5 added by Patrick Capelle, Feb 06 2008

A048661 Number of n-digit dihedral primes for which the 4 numbers (n, n upside-down, n in a mirror, n upside-down and mirrored) are distinct.

Original entry on oeis.org

0, 0, 0, 0, 0, 4, 12, 16, 132, 308, 1096, 3704, 12984, 47008, 179660, 681608
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A134996.

Programs

  • Python
    from sympy import isprime
    from itertools import count, islice, product
    def t(s): return s.translate({ord("2"):ord("5"), ord("5"):ord("2")})
    def a(n):
        if n < 2: return 0
        c = 0
        for mid in product("01258", repeat=n-2):
            s = "1" + "".join(mid) + "1"
            ss = set([s, s[::-1], t(s), t(s[::-1])])
            if len(ss) != 4: continue
            if all(isprime(int(w)) for w in ss): c += 1
        return c
    print([a(n) for n in range(1, 11)]) # Michael S. Branicky, Apr 27 2024

Extensions

a(11)-a(14) from Sean A. Irvine, Jun 25 2021
a(15)-a(16) from Michael S. Branicky, Apr 27 2024
Showing 1-4 of 4 results.