cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Colin Rose

Colin Rose's wiki page.

Colin Rose has authored 7 sequences.

A193069 Pretty wild narcissistic numbers - numbers that pwn: - an integer n that can be expressed using just the digits of n (each digit used once only and in order from left to right) and the operators + - * / ^ ! and the radical symbol. Concatenation is allowed.

Original entry on oeis.org

24, 36, 71, 119, 120, 127, 143, 144, 145, 216, 240, 343, 354, 355, 360, 384, 456, 595, 660, 693, 713, 715, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 733, 736, 744, 799, 936
Offset: 1

Author

Colin Rose, Aug 08 2011

Keywords

Comments

Unlike 'radical narcissistic numbers', the pretty wild variety are allowed to use factorials.
Pretty wild narcissistic numbers nest both radical narcissistic numbers and ordered (nice) Friedman numbers.

Examples

			24 = (2 Sqrt[4])! , 36 = 3! 6,  127 = -1 + 2^7
		

References

  • J. S. Madachy, Mathematics on Vacation, Thomas Nelson and Sons, (1966), pp. 163 - 175.
  • Colin Rose, "Radical Narcissistic numbers", J. Recreational Mathematics, vol. 33, (2004-2005), pp. 250-254.

Crossrefs

A119710 Radical narcissistic numbers: numbers n that can be expressed using just the digits of n (each digit used once only and in order from left to right) and the operators + - * / ^ and the radical symbol, but which are not already 'Good' Friedman numbers (i.e., the radical is needed for the solution to exist). Concatenation is allowed.

Original entry on oeis.org

729, 1296, 1764, 2378, 2744, 2746, 3645, 4372, 4374, 4913, 5184, 6495, 6859, 8192
Offset: 1

Author

Colin Rose, Jun 10 2006

Keywords

Comments

There are only 14 radical narcissistic integers n < 10000.

Examples

			729 = (7 + 2)^sqrt(9);
2378 = -23 + sqrt(7^8).
		

References

  • J. S. Madachy, Mathematics on Vacation, Thomas Nelson and Sons, (1966), pp. 163 - 175.
  • Colin Rose, "Radical Narcissistic numbers", J. Recreational Mathematics, vol. 33, (2004-2005), pp. 250-254.

Crossrefs

Cf. A080035.

Programs

  • Mathematica
    Mathematica code to be available at: http://www.numq.com/pwn/

A118067 Number of (directed) Hamiltonian paths in the 3 X n knight graph.

Original entry on oeis.org

0, 0, 0, 16, 0, 0, 104, 792, 1120, 6096, 21344, 114496, 257728, 1292544, 3677568, 17273760, 46801984, 211731376, 611507360, 2645699504, 7725948608, 32451640000, 97488160384, 397346625760, 1214082434112, 4835168968464, 15039729265856, 58641619298000
Offset: 1

Author

Colin Rose, May 11 2006

Keywords

Comments

1. Jelliss computes the number of tour diagrams (which is equal to half the number of tours). 2. Sequence A079137 computes the number of tour DIAGRAMS for a 4 X k board (again, equal to half the number of tours). 3. Kraitchik (1942) incorrectly reports 376 tour diagrams for the 3 X 8 case; the correct number is 396 (i.e., 792 tours) [cf. Rose, Jelliss].

References

  • Kraitchik, M., Mathematical Recreations. New York: W. W. Norton, pp. 264-5, 1942.

Crossrefs

Programs

  • Mathematica
    Mathematica notebook available at: http://www.tri.org.au/knightframe.html

Formula

a(n) = 2 * A169696(n). - Andrew Howroyd, Jul 01 2017

Extensions

a(13) from Eric W. Weisstein, Mar 13 2009
a(14)-a(21) from Seiichi Manyama, Apr 25 2016
a(22)-a(28) from Andrew Howroyd, Jul 01 2017

A117431 String n is at position n in decimal digits of golden ratio (phi).

Original entry on oeis.org

1, 20, 62, 9956
Offset: 1

Author

Colin Rose, Mar 14 2006

Keywords

Comments

The next such number is greater than 10^7. Not only does number 20 occur at the 20th digit, but it occurs again as the 20th pair of digits (cf. A117432).

Examples

			1 is a term because the first digit in the golden ratio phi is 1. (phi = 1.6180339887498948482045 ...)
		

Crossrefs

Programs

  • Mathematica
    StringFinder[m_] := Module[{cc = 10^m + m, sol, aa}, sol = Partition[RealDigits[(1+Sqrt[5])/2, 10, cc] // First, m, 1]; Do[aa = FromDigits[sol[[i]]]; If[aa==i, Print[{i, aa}]], {i,Length[sol]}];] (* Example: StringFinder[2] produces all 2-digit members of the sequence. *)
  • Python
    from sympy import S
    def aupto(nn):
      phistr = str(S.GoldenRatio.n(nn+len(str(nn))+1)).replace(".", "")[:-1]
      for n in range(1, nn+1):
        nstr = str(n)
        if phistr[n-1:n-1+len(nstr)] == nstr: print(n, end=", ")
    aupto(10**5) # Michael S. Branicky, Jan 20 2021

A117432 Let n be an integer consisting of m digits. Then n is a Phithy number if the n-th m-tuple in the decimal digits of golden ratio phi is string n.

Original entry on oeis.org

1, 20, 63, 104, 7499430, 9228401
Offset: 0

Author

Colin Rose, Mar 14 2006

Keywords

Examples

			1 is a term because the first single digit in golden ratio phi is 1.
Number 20 is a term because the 20th pair of digits in phi is 20.
(cf. phi = 1.6180339887498948482045868343656381177203...)
		

Crossrefs

Programs

  • Mathematica
    PhithyNumbers[m_] := Module[{cc = m(10^m)+m, sol, aa}, sol = Partition[RealDigits[GoldenRatio, 10, cc] // First, m]; Do[aa = FromDigits[sol[[i]]]; If[aa==i, Print[{i, aa}]], {i,Length[sol]}];] Example: PhithyNumbers[3] produces all 3-digit Phithy numbers
  • Python
    from sympy import S
    def aupto(nn):
      mm = len(str(nn))
      phistr = str(S.GoldenRatio.n(nn*mm+1)).replace(".", "")[:-1]
      for n in range(1, nn+1):
        nstr = str(n)
        m = len(nstr)
        if phistr[(n-1)*m:n*m] == nstr: print(n, end=", ")
    aupto(10**5) # Michael S. Branicky, Jan 20 2021

Extensions

a(4)-a(5) from Michael S. Branicky, Jan 21 2021

A109513 Let k be an m-digit integer. Then k is a Pithy number if the k-th m-tuple in the decimal digits of Pi (after the decimal point) is the string k.

Original entry on oeis.org

1, 19, 94, 3542, 7295, 318320, 927130, 939240, 688370303, 7682437410, 7996237896, 89594051933
Offset: 0

Author

Colin Rose, Jul 01 2005

Keywords

Examples

			1 is a term because the first digit in Pi (after the decimal point) is 1.
19 is a term because the 19th pair of digits (after the decimal point) in Pi is 19:
      1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19
  3. 14 15 92 65 35 89 79 32 38 46 26 43 38 32 79 50 28 84 19 ...
		

Crossrefs

Programs

  • Mathematica
    PithyNumbers[m_] := Module[{cc = m(10^m)+m, sol, aa}, sol = Partition[RealDigits[Pi, 10, cc] // First // Rest, m]; Do[aa = FromDigits[sol[[i]]]; If[aa==i, Print[{i, aa}]], {i, Length[sol]}];] Example: PithyNumbers[4] produces all 4-digit Pithy numbers

Extensions

a(8)-a(11) from J. Volkmar Schmidt, Dec 17 2023

A109514 Let k be an integer consisting of m digits. Then k is a Pithy number if the k-th m-tuple in the decimal digits of Pi is k.

Original entry on oeis.org

5, 9696, 19781, 199898, 687784863, 4518673035, 7526556436
Offset: 1

Author

Colin Rose, Jul 01 2005

Keywords

Comments

A near-miss '02805451' occurs at position 2805451. - Vaclav Kotesovec, Feb 19 2020

Examples

			5 is a term because the 5th single digit in Pi is 5.
9696 is a term because the 9696th quadruplet in Pi is 9696.
		

Crossrefs

Programs

  • Mathematica
    PithyNumbersWith3[m_] := Module[{cc = m(10^m)+m, sol, aa}, sol = Partition[RealDigits[Pi, 10, cc] // First, m]; Do[aa = FromDigits[sol[[i]]]; If[aa==i, Print[{i, aa}]], {i, Length[sol]}];]
    (* Example: PithyNumbersWith3[5] produces all 5-digit Pithy numbers *)

Extensions

a(5)-a(7) from J. Volkmar Schmidt, Dec 17 2023