cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A372309 The smallest number whose prime factor concatenation, when written in base n, contains all digits 0,1,...,(n-1).

Original entry on oeis.org

2, 6, 38, 174, 2866, 11670, 135570, 1335534, 15618090, 155077890, 5148702870, 31771759110, 774841780230, 11924858870610, 253941409789410, 3867805835651310
Offset: 2

Views

Author

Scott R. Shannon, Apr 26 2024

Keywords

Comments

Up to a(12) all terms have prime factors whose concatenation length in base n is n, the minimum possible value. Is this true for all a(n)?
a(13) <= 31771759110 = 2*3*5*7*13*61*190787 whose prime factors in base 13 are: 2, 3, 5, 7, 10, 49, 68abc. Sequence is a subsequence of A058760. - Chai Wah Wu, Apr 28 2024
From Chai Wah Wu, Apr 29 2024: (Start)
a(14) <= 1138370792790 = 2*3*5*7*11*877*561917 whose prime factors in base 14 are: 2, 3, 5, 7, b, 469, 108acd.
a(15) <= 23608327052310 = 2*3*5*7*11*13*233*3374069 whose prime factors in base 15 are: 2, 3, 5, 7, b, d, 108, 469ace. (End)
a(14) <= 774841780230, a(15) <= 11924858870610, a(16) <= 256023548755170, a(17) <= 4286558044897590. - Daniel Suteu, Apr 30 2024
For n <= 36, all terms have prime factors whose concatenation length in base n is n, the minimum possible value. - Dominic McCarty, Jan 07 2025

Examples

			The factorizations to a(12) are:
a(2) = 2 = 10_2, which contains all digits 0..1.
a(3) = 6 = 2 * 3 = 2_3 * 10_3, which contain all digits 0..2.
a(4) = 38 = 2 * 19 = 2_4 * 103_4, which contain all digits 0..3.
a(5) = 174 = 2 * 3 * 29 = 2_5 * 3_5 * 104_5, which contain all digits 0..4.
a(6) = 2866 = 2 * 1433 = 2_6 * 10345_6, which contain all digits 0..5.
a(7) = 11670 = 2 * 3 * 5 * 389 = 2_7 * 3_7 * 5_7 * 1064_7, which contain all digits 0..6.
a(8) = 135570 = 2 * 3 * 5 * 4519 = 2_8 * 3_8 * 5_8 * 10647_8, which contain all digits 0..7.
a(9) = 1335534 = 2 * 3 * 41 * 61 * 89 = 2_9 * 3_9 * 45_9 * 67_9 * 108_9, which contain all digits 0..8.
a(10) = 15618090 = 2 * 3 * 5 * 487 * 1069, which contain all digits 0..9. See A058909.
a(11) = 155077890 = 2 * 3 * 5 * 11 * 571 * 823 = 2_11 * 3_11 * 5_11 * 10_11 * 47a_11 * 689_11, which contain all digits 0..a.
a(12) = 5148702870 = 2 * 3 * 5 * 151 * 1136579 = 2_12 * 3_12 * 5_12 * 107_12 * 4698ab_12, which contain all digits 0..b.
		

Crossrefs

Programs

  • Python
    from math import factorial
    from itertools import count
    from sympy import factorint
    from sympy.ntheory import digits
    def a(n):
        for k in count(factorial(n)):
            s = set()
            for p in factorint(k): s.update(digits(p, n)[1:])
            if len(s) == n: return k
    print([a(n) for n in range(2, 10)]) # Michael S. Branicky, Apr 28 2024

Formula

a(n) >= n!. - Michael S. Branicky, Apr 28 2024
a(n) <= A185122(n). - Michael S. Branicky, Apr 28 2024

Extensions

a(13)-a(16) from Martin Ehrenstein, May 03 2024
a(17) from Dominic McCarty, Jan 07 2025

A058909 Integers whose set of prime factors (taken with multiplicity) uses each digit exactly once (i.e., is pandigital) in base 10.

Original entry on oeis.org

15618090, 22022490, 22816290, 22908090, 23294190, 23507490, 26679990, 27114690, 27687090, 28275690, 29447898, 29544690, 29582490, 29670378, 29910138, 30134238, 30426918, 31207890, 31406910, 31430670, 31490610, 32024670, 32035470, 32054910
Offset: 1

Views

Author

Mike Keith and G. L. Honaker, Jr., Jan 08 2001

Keywords

Comments

The last term is a(248769) = 8439563243 = 9643*875201. - Giovanni Resta, Nov 20 2019

Examples

			15618090 is in the sequence since 2 * 3 * 5 * 487 * 1069 is pandigital; 29447898 because 2 * 3 * 107 * 45869 is pandigital.
		

Crossrefs

Cf. A058760.
Showing 1-2 of 2 results.