A057680 Self-locating strings within Pi: numbers n such that the string n is at position n in the decimal digits of Pi, where the initial digit 3 is at position 0.
1, 16470, 44899, 79873884, 711939213, 36541622473, 45677255610, 62644957128, 656430109694
Offset: 1
Examples
1 is a term because the string of digits '1' occurs as the 1st digit after the decimal point. Similarly, 16470 is a term because the string of digits '16470' occurs starting at position 16470 (after the decimal point) in the digits of Pi (although it already occurs earlier at position 1602). - _M. F. Hasler_, Jul 29 2024
References
- Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 60.
Links
- David G. Andersen, The Pi-Search Page.
- Tom Crawford and Brady Haran, Strings and Loops within Pi, Numberphile video (2020).
- Google, 50 trillion digits of pi (2020).
Crossrefs
Programs
-
Mathematica
StringsinPiAfterPoint[m_] := Module[{cc = 10^m + m, sol, aa}, sol = Partition[RealDigits[Pi,10,cc] // First // Rest, m, 1]; Do[aa = FromDigits[sol[[i]]]; If[aa==i, Print[{i, aa}]], {i,Length[sol]}];] (* For example, StringsinPiAfterPoint[5] returns all 5-digit members of the sequence. - Colin Rose, Mar 15 2006 *) Do[If[RealDigits[Pi,10,a=i+IntegerLength@i-1,-1][[1,i;;a]]==IntegerDigits@i,Print@i],{i,50000}] (* Giorgos Kalogeropoulos, Feb 21 2020 *)
-
PARI
A057680_row(r=5)={my(M=10^r, R=[]); for(n=M\10, M-1, localprec(n+r); Pi\10^(1-r-n)%M==n && !print1(n",") && R=concat(R,n));R} \\ prints & returns the r-digit terms. - M. F. Hasler, Jul 29 2024
Extensions
More terms from Colin Rose, Mar 15 2006
a(5) from Nathaniel Johnston, Nov 12 2010
a(6)-a(8) from Alan Eliasen, May 01 2013
a(9) from Alan Eliasen, Jun 06 2013
Name clarified by Kang Seonghoon, Nov 02 2020
Edited by M. F. Hasler, Jul 29 2024
Comments