A074871 Start with n and repeatedly apply the map k -> T(k) = A053837(k) + A171765(k); a(n) is the number of steps (at least one) until a prime is reached, or 0 if no prime is ever reached.
0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 0, 1, 0, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 1, 0, 0, 0, 1, 0, 1, 0, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 0, 1, 2, 2, 0, 1, 3, 2, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 0, 1, 2, 2, 2, 1, 2, 1, 2, 1, 0, 0, 1, 1, 2, 3, 1, 2, 1, 1, 0, 1, 1, 0, 1, 0
Offset: 1
Examples
T(2)=2. So in one step we reach a prime. T(3)=3 and then in one step again we reach a prime. T(4)=4 and we will never reach a prime. T(11)=1+2=3 and again in one step we reach a prime. T(17)=7+8=15 --> T(15)=5+6=11 and then in two steps we reach a prime. T(13)=3+4=7 and then 1 step...... T(14)=4+5=9 --> T(9)=9 --> T(9)=9........ and we will never reach a prime.
Programs
-
Mathematica
g[n_] := Block[{id = IntegerDigits@ n}, Mod[ Plus @@ id, 10] + If[n < 10, 0, Times @@ id]]; f[n_] := Block[{lst = Rest@ NestWhileList[g, n, UnsameQ, All]}, lsp = PrimeQ@ lst; If[ Last@ Union@ lsp == False, 0, Position[lsp, True, 1, 1][[1, 1]]]]; Array[f, 105] (* Robert G. Wilson v, Oct 20 2010 *)
Extensions
Edited by N. J. A. Sloane, Oct 12 2010
More terms from Robert G. Wilson v, Oct 20 2010
Comments