A172055 n-th number k such that 6*k-1 is composite while 6*k+1 is prime plus n-th number m such that 6*m-1 is prime while 6*m+1 is composite.
10, 19, 22, 30, 36, 45, 49, 63, 66, 85, 93, 98, 100, 110, 115, 122, 126, 132, 138, 143, 155, 158, 168, 171, 178, 185, 187, 198, 206, 213, 217, 229, 231, 236, 239, 243, 248, 255, 269, 275, 284, 293, 300, 309, 317, 321, 325, 331, 337, 343, 349, 351, 357, 378
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
Programs
-
GAP
A121765:=Filtered([1..350],k-> not IsPrime(6*k-1) and IsPrime(6*k+1));; A121763:=Filtered([1..350],n-> not IsPrime(6*n+1) and IsPrime(6*n-1));; Print(List([1..80],j->A121765[j]+A121763[j])); # G. C. Greubel, Feb 20 2019
-
Magma
A121765:=[n: n in [1..350] | not IsPrime(6*n-1) and IsPrime(6*n+1)]; A121763:=[n: n in [1..350] | IsPrime(6*n-1) and not IsPrime(6*n+1)]; [A121765[n] + A121763[n]: n in [1..80]]; // G. C. Greubel, Feb 20 2019
-
Maple
A121765:=select(k->not isprime(6*k-1) and isprime(6*k+1),[$1..350]): A121763:=select(n->not isprime(6*n+1) and isprime(6*n-1),[$1..350]): seq(A121765[m]+A121763[m],m=1..60); # Muniru A Asiru, Feb 21 2019
-
Mathematica
A121765:= Select[Range[350], !PrimeQ[6#-1] && PrimeQ[6#+1] &]; A121763:= Select[Range[350], PrimeQ[6#-1] && !PrimeQ[6#+1] &]; Table[A121765[[n]] + A121763[[n]], {n, 1, 80}] (* G. C. Greubel, Feb 20 2019 *)
-
Sage
A121765=[n for n in (1..350) if not is_prime(6*n-1) and is_prime(6*n+1)]; A121763=[n for n in (1..350) if is_prime(6*n-1) and not is_prime(6*n+1)]; [A121765[n] + A121763[n] for n in (0..80)] # G. C. Greubel, Feb 20 2019
Extensions
Entries checked by R. J. Mathar, May 22 2010