A368062 Numbers k such that k = A257850(k) + A257297(k).
0, 36, 655, 1258, 6208, 12508, 45715, 65455, 75385, 125008, 235297, 1250008, 2857144, 3214288, 4210528, 6545455, 6792453, 12500008, 34615386, 47058824, 87671233, 125000008, 654545455, 1250000008, 9529411765, 12500000008, 39130434783, 45714285715, 65454545455, 75384615385
Offset: 1
Examples
0 = 0*0 + 0*0; 36 = 3*6 + 3*6; 655 = 6*55 + 65*5; 6208 = 6*208 + 620*8; ...
Links
- Kevin Ryde, Table of n, a(n) for n = 1..700
- Nicolas Bělohoubek, C# program
- Nicolas Bělohoubek, Subsequences of form A-(B)-C
- Kevin Ryde, PARI/GP Code
Programs
-
Mathematica
Select[Range[0,10^6], Part[digits=IntegerDigits[#],1]FromDigits[Drop[digits,1]] + FromDigits[Drop[digits,-1]]Part[digits,Length[digits]] == # &] (* Stefano Spezia, Dec 10 2023 *)
-
PARI
\\ See links.
-
Python
def ok(n): if n < 10: return n == 0 s = str(n) return n == int(s[0])*int(s[1:]) + (n%10)*(n//10) print([k for k in range(10**6) if ok(k)]) # Michael S. Branicky, Dec 10 2023
-
Python
# faster for generating initial segment of sequence from itertools import count, islice def agen(): # generator of terms yield 0 for digits in count(2): for first in range(1, 10): base = first*10**(digits-1) for rest in range(10**(digits-1)): n = base + rest if first*rest + (n%10)*(n//10) == n: yield n print("...", digits, first, time()-time0, alst) print(list(islice(agen(), 18))) # Michael S. Branicky, Dec 10 2023
Extensions
a(24)-a(30) from Michael S. Branicky, Dec 10 2023
Comments