cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A038628 Erroneous version of A039686.

Original entry on oeis.org

49, 169, 1225, 1444, 1681, 3249, 4225, 4900, 15625, 16900, 42025, 49729, 64009
Offset: 1

Views

Author

Keywords

A191933 Numbers that are the concatenation of the decimal representation of two nonzero squares.

Original entry on oeis.org

11, 14, 19, 41, 44, 49, 91, 94, 99, 116, 125, 136, 149, 161, 164, 169, 181, 251, 254, 259, 361, 364, 369, 416, 425, 436, 449, 464, 481, 491, 494, 499, 641, 644, 649, 811, 814, 819, 916, 925, 936, 949, 964, 981, 1001, 1004, 1009, 1100, 1121, 1144, 1169, 1196
Offset: 1

Views

Author

Klaus Brockhaus, Jun 19 2011

Keywords

Comments

Complement of A193096; A193095(a(n)) > 0; A038670, A039686, A167535, A192993, A193097 and A193144 are subsequences. [Reinhard Zumkeller, Jul 17 2011]

Crossrefs

Programs

  • Haskell
    import Data.List (findIndices)
    a191933 n = a191933_list !! (n-1)
    a191933_list = findIndices (> 0) $ map a193095 [0..]
    -- Reinhard Zumkeller, Jul 17 2011
  • Magma
    CheckSplits:=function(n); v:=false; S:=Intseq(n); for j in [1..#S-1] do A:=[ S[k]: k in [1..j] ]; a:=Seqint(A); B:=[ S[k]: k in [j+1..#S] ]; b:=Seqint(B); if a gt 0 and A[#A] gt 0 and IsSquare(a) and IsSquare(b) then v:=true; end if; end for; return v; end function; [ p: p in [1..1200] | CheckSplits(p) ];
    
  • Mathematica
    Take[Union[Flatten[Table[FromDigits[Flatten[{IntegerDigits[m^2], IntegerDigits[n^2]}]], {m, 20}, {n, 20}]]], 50] (* Alonso del Arte, Aug 11 2011 *)
    squareQ[n_] := IntegerQ[Sqrt[n]]; okQ[n_] := MatchQ[IntegerDigits[n], {a__ /; squareQ[FromDigits[{a}]], b__ /; First[{b}] > 0 && squareQ[FromDigits[ {b}]]}]; Select[Range[2000], okQ] (* Jean-François Alcover, Dec 13 2016 *)

A048375 Numbers whose square is a concatenation of two nonzero squares.

Original entry on oeis.org

7, 13, 19, 35, 38, 41, 57, 65, 70, 125, 130, 190, 205, 223, 253, 285, 305, 350, 380, 410, 475, 487, 570, 650, 700, 721, 905, 975, 985, 1012, 1201, 1250, 1265, 1300, 1301, 1442, 1518, 1771, 1900, 2024, 2050, 2163, 2225, 2230, 2277, 2402, 2435, 2530, 2850
Offset: 1

Views

Author

Patrick De Geest, Mar 15 1999

Keywords

Comments

Leading zeros not allowed, trailing zeros are.
This means that, e.g., 95 is not in the sequence although 95^2 = 9025 could be seen as concatenation of 9 and 025 = 5^2. - M. F. Hasler, Jan 25 2016

Examples

			1771^2 = 3136441 = 3136_441 and 3136 = 56^2, 441 = 21^2.
		

Crossrefs

Programs

  • Mathematica
    squareQ[n_] := IntegerQ[Sqrt[n]]; okQ[n_] := MatchQ[IntegerDigits[n^2], {a__ /; squareQ[FromDigits[{a}]], b__ /; First[{b}] > 0 && squareQ[FromDigits[{b}]]}]; Select[Range[3000], okQ] (* Jean-François Alcover, Oct 20 2011, updated Dec 13 2016 *)
  • PARI
    is_A048375(n)={my(p=100^valuation(n,10));n*=n;while(n>p*=10,issquare(n%p)&&issquare(n\p)&&n%p*10>=p&&return(1))} \\ M. F. Hasler, Jan 25 2016
    
  • Python
    from math import isqrt
    def issquare(n): return isqrt(n)**2 == n
    def ok(n):
      d = str(n)
      for i in range(1, len(d)):
        if d[i] != '0' and issquare(int(d[:i])) and issquare(int(d[i:])):
          return True
      return False
    print([r for r in range(2851) if ok(r*r)]) # Michael S. Branicky, Jul 13 2021

Formula

a(n) = sqrt(A039686(n)). - M. F. Hasler, Jan 25 2016

A147608 Squares which are concatenation of two positive squares with possible intervening zeros.

Original entry on oeis.org

49, 169, 361, 1225, 1444, 1681, 3249, 4225, 4900, 9025, 15625, 16900, 36100, 42025, 49729, 64009, 81225, 93025, 105625, 122500, 144400, 168100, 225625, 237169, 256036, 324900, 422500, 490000, 519841, 576081, 819025, 902500, 950625, 970225
Offset: 1

Views

Author

Zak Seidov, Nov 08 2008

Keywords

Comments

A145848 is a subsequence.

Examples

			324 = 18^2, 9 = 3^2, 3249 = 324:9 = 57^2.
9 = 3^2, 25 = 5^2, 9025 = 9:0:25 = 95^2 (intervening zero).
		

Crossrefs

Cf. A039686 (variant with no intervening zeros).
Cf. A145848 (squares with an even number of digits, where the first half is a square and the second half is a nonzero square).

Programs

  • Mathematica
    s={}; Do[n2=n*n; id=IntegerDigits[n2]; Le=Length[id]; Do[If[IntegerQ/@Sqrt[FromDigits/@{Take[id,k], Drop[id,k]}] == {True,True}, If[FromDigits@Drop[id,k]>0, Print[n2]; AppendTo[s,n2]; Break[]]], {k,1,Le-1}], {n,4,10^4}]

Extensions

Edited by Charles R Greathouse IV, Apr 24 2010
Definition corrected by David W. Wilson, Nov 22 2012

A054738 Squares which can be split into two nonzero squares (perhaps with leading zeros) in exactly two different ways.

Original entry on oeis.org

64009, 1600225, 4950625, 6400900, 40005625, 160022500, 324900625, 360050625, 495062500, 624100324, 640090000, 1000140625, 4000562500, 9001265625, 16002250000, 25003515625, 32490062500, 36005062500, 49006890625, 49506250000, 62410032400, 64009000000
Offset: 0

Views

Author

Henry Bottomley, Apr 26 2000

Keywords

Examples

			4950625=2225^2 can be split into 49=7^2 and 50625=225^2 or into 4=2^2 and 950625=975^2; 6400900=2530^2 can be split into 6400=80^2 and 900=30^2 or into 64=8^2 and 00900=30^2
		

Crossrefs

Cf. A039686.

Formula

a(n) = A054737(n)^2. - Sean A. Irvine, Feb 20 2022

Extensions

More terms from Sean A. Irvine, Feb 20 2022

A219542 Numbers n such that n^2 is a concatenation of 3 nonzero squares, leading zeros not allowed.

Original entry on oeis.org

12, 21, 37, 44, 107, 108, 120, 129, 191, 204, 209, 210, 223, 306, 315, 342, 343, 345, 370, 408, 413, 440, 501, 642, 696, 804, 955, 959, 982, 995, 1002, 1044, 1063, 1065, 1070, 1080, 1107, 1169, 1200, 1275, 1281, 1290, 1301, 1306, 1315, 1349, 1385, 1503, 1910
Offset: 1

Views

Author

Zak Seidov, Nov 22 2012

Keywords

Examples

			a(1) = 12: 12^2 = 144, 1 = 1^2, 4 = 2^2, 4 = 2^2;
a(1500) = 3176900^2 = 100, 9, 2693610000, 100 = 10^2, 9 = 3^2, 2693610000 = 51900^2.
		

Crossrefs

A258060 Squares, without multiplicity, that are the concatenation of two integers (without leading zeros) the product of which is also a square.

Original entry on oeis.org

49, 169, 361, 1225, 1444, 1681, 3249, 4225, 4900, 15625, 16900, 36100, 42025, 49729, 64009, 81225, 93025, 122500, 142129, 144400, 168100, 225625, 237169, 324900, 414736, 422500, 490000, 519841, 819025, 950625, 970225, 1024144, 1442401, 1562500, 1600225, 1690000, 1692601, 2079364, 2304324
Offset: 1

Views

Author

Reiner Moewald, Jul 26 2015

Keywords

Comments

Squares that can be split up in more than one way, e.g., 4950625 with sqrt(4 * 950625) = 1950 and sqrt(49 * 50625) = 1575, appear only once.
Squares that are members of this sequence in more than one way: 4950625, 495062500, 49506250000, 4950625000000, ..., . - Robert G. Wilson v, Aug 14 2015

Examples

			169 = 13^2 can be split up into 16 and 9 and 16*9 = 144, a square.
		

Crossrefs

Subsequence of A039686.

Programs

  • Maple
    p:= proc(k,n) local t; t:= n mod 10^k; t >= 10^(k-1) and issqr(t*(n-t)/10^k) end proc:
    filter:= n -> ormap(p, [$1..ilog10(n)], n):
    select(filter, [seq(i^2, i=1..10^4)]); # Robert Israel, Sep 22 2015
  • Mathematica
    f[n_] := Block[{idn = IntegerDigits@ n, c = 0, k = 1, lmt = Floor[1 + Log10@ n]}, While[k < lmt, m = Mod[n, 10^(lmt - k)]; If[ IntegerQ@ Sqrt[ FromDigits[ Take[idn, {1, k}]] m] && m > 0 && IntegerDigits[m] == Take[idn, {k + 1, -1}], c++]; k++]; c]; Select[ Range[1700]^2, f@# > 0 &] (* Robert G. Wilson v, Aug 13 2015 *)
  • PARI
    isok(n) = {if (issquare(n), len = #Str(n); for (k=1, len-1, na = n\10^k; nb = n%10^k; if (na && nb && (eval(Str(na,nb))==n) && issquare(na*nb), return (1));););} \\ Michel Marcus, Oct 09 2015
  • Python
    import math
    list =[]
    for i in range(1,100000):
       a = i*i
       b = str(a)
       l = len(b)
       for j in range(1, l):
          a_1 = b[:j]
          a_2 = b[j:]
          c = int(a_1)* int(a_2)
          sqrt_c = int(math.sqrt(int(c)))
          if (sqrt_c * sqrt_c == c) and (int(a_2[:1]) > 0):
             if not a in list:
                list.append(a)
             list.append(a)
    print(list)
    

A351925 Squares which are the concatenation of two primes.

Original entry on oeis.org

25, 289, 361, 529, 729, 2401, 2601, 2809, 4761, 5329, 5929, 7569, 11449, 11881, 15129, 19881, 21609, 22801, 23409, 24649, 25281, 26569, 29241, 29929, 31329, 34969, 36481, 39601, 47961, 52441, 53361, 54289, 57121, 58081, 59049, 71289, 77841, 83521, 89401
Offset: 1

Views

Author

Max Z. Scialabba, Feb 25 2022

Keywords

Comments

The first term that is the concatenation of two primes in more than one way is a(11) = 5929 = 5 | 929 = 59 | 29. - Robert Israel, Oct 01 2023

Examples

			25 is the concatenation of 2 and 5, both primes.
4761 is the concatenation of 47 and 61, both primes.
		

Crossrefs

Cf. A000290 (squares), A039686, A106582, inverse of A167535.

Programs

  • Maple
    L:= NULL: count:=0:
    for x from 1 by 2 while count < 100 do
      xs:= x^2;
      for i from 1 to ilog10(xs) do
        a:= xs mod 10^i;
        if a > 10^(i-1) and isprime(a) then
          b:= (xs-a)/10^i;
          if isprime(b) then
            L:= L, xs; count:= count+1; break
          fi fi
    od od:
    L; # Robert Israel, Oct 01 2023
  • PARI
    isb(n)={my(d=10); while(dAndrew Howroyd, Feb 26 2022
    
  • Python
    from sympy import isprime
    from itertools import count, islice
    def agen(): # generator of terms
        for k in count(1):
            s = str(k*k)
            if any(s[i] != '0' and isprime(int(s[:i])) and isprime(int(s[i:])) for i in range(1, len(s))):
                yield k*k
    print(list(islice(agen(), 39))) # Michael S. Branicky, Feb 26 2022

Formula

Intersection of A106582 and A000290.
Showing 1-8 of 8 results.