cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Max Z. Scialabba

Max Z. Scialabba's wiki page.

Max Z. Scialabba has authored 2 sequences.

A368063 a(n) is the least number k such that sigma(sigma(k) * k) > n * sigma(k) * k.

Original entry on oeis.org

1, 2, 3, 10, 160, 12155, 26558675
Offset: 0

Author

Max Z. Scialabba, Dec 10 2023

Keywords

Comments

Application of A134716 (sigma(k) / k > n) to A064987.
From Daniel Suteu, Dec 21 2023: (Start)
a(7) <= 114775357632650.
a(8) <= 272113056574982766111055794421. (End)

Examples

			For n = 4, the divisors of 160 sum to 378. 160 * 378 = 60480, whose divisors sum up to 243840 > 4 * 60480.
		

Crossrefs

Programs

  • Java
    public static void main(String[] args)
        {
            long max = 0;
            for (long c = 1; c < Math.pow(10, 8); c = c + 1)
            {
                if (factorSum(factorSum(c) * c) > max * factorSum(c) * c)
                {
                    System.out.println(c + ": " + factorSum(c) * c);
                    max = max + 1;
                }
            }
        }
        public static long factorSum(long n)
        {
            long sum = 0;
            for (long c = 1; c <= Math.sqrt(n); c = c + 1)
            {
                if (n % c == 0)
                {
                    sum = sum + c;
                    if (c != Math.sqrt(n))
                    {
                        sum = sum + n / c;
                    }
                }
            }
            return sum;
        }
    
  • Mathematica
    a={}; For[n=0, n<=6, n++, k=1; While[DivisorSigma[1,DivisorSigma[1,k]k] <= n DivisorSigma[1,k] k, k++]; AppendTo[a,k]]; a (* Stefano Spezia, Dec 10 2023 *)
  • PARI
    a(n) = my(k=1); while (sigma(sigma(k)*k) <= n * sigma(k) * k, k++); k; \\ Michel Marcus, Dec 10 2023

Extensions

a(6) from Michel Marcus, Dec 10 2023

A351925 Squares which are the concatenation of two primes.

Original entry on oeis.org

25, 289, 361, 529, 729, 2401, 2601, 2809, 4761, 5329, 5929, 7569, 11449, 11881, 15129, 19881, 21609, 22801, 23409, 24649, 25281, 26569, 29241, 29929, 31329, 34969, 36481, 39601, 47961, 52441, 53361, 54289, 57121, 58081, 59049, 71289, 77841, 83521, 89401
Offset: 1

Author

Max Z. Scialabba, Feb 25 2022

Keywords

Comments

The first term that is the concatenation of two primes in more than one way is a(11) = 5929 = 5 | 929 = 59 | 29. - Robert Israel, Oct 01 2023

Examples

			25 is the concatenation of 2 and 5, both primes.
4761 is the concatenation of 47 and 61, both primes.
		

Crossrefs

Cf. A000290 (squares), A039686, A106582, inverse of A167535.

Programs

  • Maple
    L:= NULL: count:=0:
    for x from 1 by 2 while count < 100 do
      xs:= x^2;
      for i from 1 to ilog10(xs) do
        a:= xs mod 10^i;
        if a > 10^(i-1) and isprime(a) then
          b:= (xs-a)/10^i;
          if isprime(b) then
            L:= L, xs; count:= count+1; break
          fi fi
    od od:
    L; # Robert Israel, Oct 01 2023
  • PARI
    isb(n)={my(d=10); while(dAndrew Howroyd, Feb 26 2022
    
  • Python
    from sympy import isprime
    from itertools import count, islice
    def agen(): # generator of terms
        for k in count(1):
            s = str(k*k)
            if any(s[i] != '0' and isprime(int(s[:i])) and isprime(int(s[i:])) for i in range(1, len(s))):
                yield k*k
    print(list(islice(agen(), 39))) # Michael S. Branicky, Feb 26 2022

Formula

Intersection of A106582 and A000290.