A368063 a(n) is the least number k such that sigma(sigma(k) * k) > n * sigma(k) * k.
1, 2, 3, 10, 160, 12155, 26558675
Offset: 0
Examples
For n = 4, the divisors of 160 sum to 378. 160 * 378 = 60480, whose divisors sum up to 243840 > 4 * 60480.
Programs
-
Java
public static void main(String[] args) { long max = 0; for (long c = 1; c < Math.pow(10, 8); c = c + 1) { if (factorSum(factorSum(c) * c) > max * factorSum(c) * c) { System.out.println(c + ": " + factorSum(c) * c); max = max + 1; } } } public static long factorSum(long n) { long sum = 0; for (long c = 1; c <= Math.sqrt(n); c = c + 1) { if (n % c == 0) { sum = sum + c; if (c != Math.sqrt(n)) { sum = sum + n / c; } } } return sum; }
-
Mathematica
a={}; For[n=0, n<=6, n++, k=1; While[DivisorSigma[1,DivisorSigma[1,k]k] <= n DivisorSigma[1,k] k, k++]; AppendTo[a,k]]; a (* Stefano Spezia, Dec 10 2023 *)
-
PARI
a(n) = my(k=1); while (sigma(sigma(k)*k) <= n * sigma(k) * k, k++); k; \\ Michel Marcus, Dec 10 2023
Extensions
a(6) from Michel Marcus, Dec 10 2023
Comments