cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A191933 Numbers that are the concatenation of the decimal representation of two nonzero squares.

Original entry on oeis.org

11, 14, 19, 41, 44, 49, 91, 94, 99, 116, 125, 136, 149, 161, 164, 169, 181, 251, 254, 259, 361, 364, 369, 416, 425, 436, 449, 464, 481, 491, 494, 499, 641, 644, 649, 811, 814, 819, 916, 925, 936, 949, 964, 981, 1001, 1004, 1009, 1100, 1121, 1144, 1169, 1196
Offset: 1

Views

Author

Klaus Brockhaus, Jun 19 2011

Keywords

Comments

Complement of A193096; A193095(a(n)) > 0; A038670, A039686, A167535, A192993, A193097 and A193144 are subsequences. [Reinhard Zumkeller, Jul 17 2011]

Crossrefs

Programs

  • Haskell
    import Data.List (findIndices)
    a191933 n = a191933_list !! (n-1)
    a191933_list = findIndices (> 0) $ map a193095 [0..]
    -- Reinhard Zumkeller, Jul 17 2011
  • Magma
    CheckSplits:=function(n); v:=false; S:=Intseq(n); for j in [1..#S-1] do A:=[ S[k]: k in [1..j] ]; a:=Seqint(A); B:=[ S[k]: k in [j+1..#S] ]; b:=Seqint(B); if a gt 0 and A[#A] gt 0 and IsSquare(a) and IsSquare(b) then v:=true; end if; end for; return v; end function; [ p: p in [1..1200] | CheckSplits(p) ];
    
  • Mathematica
    Take[Union[Flatten[Table[FromDigits[Flatten[{IntegerDigits[m^2], IntegerDigits[n^2]}]], {m, 20}, {n, 20}]]], 50] (* Alonso del Arte, Aug 11 2011 *)
    squareQ[n_] := IntegerQ[Sqrt[n]]; okQ[n_] := MatchQ[IntegerDigits[n], {a__ /; squareQ[FromDigits[{a}]], b__ /; First[{b}] > 0 && squareQ[FromDigits[ {b}]]}]; Select[Range[2000], okQ] (* Jean-François Alcover, Dec 13 2016 *)

A193095 Number of times n can be written as concatenation of exactly two nonzero squares in decimal representation.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 17 2011

Keywords

Comments

a(A193096(n))=0; a(A191933(n))>0; a(A193097(n))=1; a(A192993(n))>1; a(A038670(n))=2.

Examples

			a(164) = 2, A191933(15) = A192993(1) = 164: 1'64 == 16'4.
		

Crossrefs

Cf. A010052.

Programs

  • Haskell
    a193095 n = sum $ map c [1..(length $ show n) - 1] where
       c k | head ys == '0' = 0
           | otherwise      = a010052 (read xs) * a010052 (read ys) where
           (xs,ys) = splitAt k $ show n
    
  • PARI
    A193095(n) = sum( t=1,#Str(n)-1, apply(issquare,divrem(n,10^t))==[1,1]~ && n%10^t>=10^(t-1))  \\ M. F. Hasler, Jul 24 2011
    
  • PARI
    A193095(n)={ my(c,p=1); while( n>p*=10, n%p*10>=p||next; issquare(n%p)||next; issquare(n\p) && c++);c}  \\ M. F. Hasler, Jul 24 2011

A038670 Concatenations of two squares in two ways.

Original entry on oeis.org

164, 1441, 1625, 1961, 2564, 4841, 12116, 14449, 16400, 25625, 46241, 48464, 115625, 116641, 144100, 148841, 160025, 162500, 163844, 169169, 184964, 193636, 196100, 256400, 361225, 368649, 466564, 484100, 493025, 961009, 973441
Offset: 1

Views

Author

Keywords

Comments

Equals A192993 for terms < 40000000, see comment and b-file in A192993. - Reinhard Zumkeller, Jul 15 2011
Subsequence of A192993; A193095(a(n)) = 2. - Reinhard Zumkeller, Jul 17 2011

Examples

			a(1) = 164 = concat(1^2,8^2) = concat(4^2, 2^2).
		

Programs

  • Haskell
    import Data.List (elemIndices)
    a038670 n = a038670_list !! (n-1)
    a038670_list = elemIndices 2 $ map a193095 [0..]
    -- Reinhard Zumkeller, Jul 17 2011

A193097 Numbers that are the concatenation of exactly one pair of nonzero squares.

Original entry on oeis.org

11, 14, 19, 41, 44, 49, 91, 94, 99, 116, 125, 136, 149, 161, 169, 181, 251, 254, 259, 361, 364, 369, 416, 425, 436, 449, 464, 481, 491, 494, 499, 641, 644, 649, 811, 814, 819, 916, 925, 936, 949, 964, 981, 1001, 1004, 1009, 1100, 1121, 1144, 1169, 1196, 1211
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 17 2011

Keywords

Comments

Subsequence of A191933; A193095(a(n)) = 1.

Examples

			161 = concat(4^2,1^2), therefore 161 is a term;
164 = concat(1^2,8^2) = concat(4^2,2^2), therefore 164 is not a term (A191933(15)=A192993(1)=164, A193095(164)=2).
		

Programs

  • Haskell
    import Data.List (elemIndices)
    a193097 n = a193097_list !! (n-1)
    a193097_list = elemIndices 1 $ map a193095 [0..]
  • Mathematica
    Take[Union[FromDigits[Flatten[IntegerDigits/@((#)^2)]]&/@Tuples[Range[14],2]],60] (* Harvey P. Dale, Jul 27 2011 *)
Showing 1-4 of 4 results.