cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 95 results. Next

A062825 Ch(n-th nonprime) where Ch(n) is Chowla's function, cf. A048050.

Original entry on oeis.org

0, 2, 5, 6, 3, 7, 15, 9, 8, 14, 20, 21, 10, 13, 35, 5, 15, 12, 27, 41, 30, 14, 19, 12, 54, 21, 16, 49, 53, 39, 32, 25, 75, 7, 42, 20, 45, 65, 16, 63, 22, 31, 107, 33, 40, 62, 18, 77, 57, 26, 73, 122, 39, 48, 63, 18, 89, 105, 39, 43, 139, 22, 45, 32, 91, 143, 20, 75, 34, 49, 24, 155, 72, 56, 116, 113, 105, 86, 55, 171, 105, 40, 135
Offset: 1

Views

Author

Jason Earls, Jul 20 2001

Keywords

Comments

a(n) = A048050(A018252(n)).
a(n+1) = sum of nontrivial divisors of n-th composite number, or row sums in table A163870. - Juri-Stepan Gerasimov, Aug 06 2009

Crossrefs

Programs

  • Haskell
    a062825 1 = 0
    a062825 n = sum $ a163870_row (n - 1) -- Reinhard Zumkeller, Mar 29 2014
  • Maple
    with(numtheory): a_list := proc(n); {$1..n} minus select(isprime,{$1..n}); sort(convert(%, list)); map(f->add(d,d=(divisors(f) minus {1,f})),%) end: a_list(113); # Peter Luschny, Mar 29 2014
  • Mathematica
    Reap[Do[If[!PrimeQ[k], Sow[If[k == 1, 0, DivisorSigma[1, k] - k - 1 ]]], {k, 1, 120}]][[2, 1]] (* Jean-François Alcover, Feb 12 2018 *)
  • PARI
    j=[0]; for(n=2,200, if(isprime(n), n+1,j=concat(j, sigma(n)-n-1))); j
    

Extensions

Definition revised and a(1) corrected by Reinhard Zumkeller, Mar 29 2014

A063534 Numbers k such that C(k) = H(k) + d(k), where C(k) is Chowla's function A048050, H(k) is the half-totient function A023022 and d(k) is the number of divisors function A000005.

Original entry on oeis.org

6, 8, 15, 21, 33, 39, 51, 57, 69, 87, 93, 111, 123, 129, 141, 159, 177, 183, 201, 213, 219, 237, 249, 267, 291, 303, 309, 321, 327, 339, 381, 393, 411, 417, 447, 453, 471, 489, 501, 519, 537, 543, 573, 579, 591, 597, 633, 669, 681, 687, 699, 717, 723, 753
Offset: 1

Views

Author

Jason Earls, Aug 02 2001

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], DivisorSigma[1, #] - 1 - # == EulerPhi[#]/2 + DivisorSigma[0, #] &] (* Paolo Xausa, Apr 17 2024 *)
  • PARI
    C(n)=sigma(n)-n-1;
    H(n)=eulerphi(n)/2;
    j=[]; for(n=1,1200, if(C(n)==H(n)+numdiv(n),j=concat(j,n))); j
    
  • PARI
    { n=0; for (m=1, 10^9, if (sigma(m) - m - 1 == eulerphi(m)/2 + numdiv(m), write("b063534.txt", n++, " ", m); if (n==1000, break)) ) } \\ Harry J. Smith, Aug 25 2009
    
  • PARI
    is(n) = {my(f = factor(n)); sigma(f) - n - 1 == eulerphi(f) / 2 + numdiv(f);} \\ Amiram Eldar, Apr 15 2024

Formula

Conjecture: a(n) = A001748(n), n <> 2. - R. J. Mathar, Dec 15 2008
The conjecture is false. The least counterexample is a(11546) = 368335 = 5 * 11 * 37 * 181. The next counterexample is 4922335, and there are no more below 10^10. - Amiram Eldar, Apr 15 2024

A070016 Least m such that Chowla's function value of m [A048050(m)] equals n or 0 if no such number exists.

Original entry on oeis.org

0, 4, 9, 0, 6, 8, 10, 15, 14, 21, 121, 27, 22, 16, 12, 39, 289, 65, 34, 18, 20, 57, 529, 95, 46, 69, 28, 115, 841, 32, 58, 45, 62, 93, 24, 155, 1369, 217, 44, 63, 30, 50, 82, 123, 52, 129, 2209, 75, 40, 141, 0, 235, 42, 36, 106, 99, 68, 265, 3481, 371, 118, 64, 56, 117
Offset: 1

Views

Author

Labos Elemer, Apr 12 2002

Keywords

Comments

Remark that A070016(n)=A070015(n+1) in accordance with A048995(k)+1=A005114(k).

Examples

			n=127: a(n)=16129, divisors={1,127,16129}, 127=sigma[n]-n-1=127 and 16129 is the smallest.
		

Crossrefs

Programs

  • Mathematica
    f1[x_] := DivisorSigma[1, x]-x-1; t=Table[0, {128}]; Do[b=f1[n]; If[b<129&&t[[b]]==0, t[[b]]=n], {n, 1, 1000000}]; t

Formula

a(n)=Min{x; A048050(x)=n} or a(n)=0 if n is from A048995.

A153023 If n is 1 or prime then a(n) = n. Otherwise, start with n and iterate the map k -> A048050(k) until we reach a prime p; then a(n) = p. If we never reach a prime, a(n) = -1. A048050 gives the sum of proper divisors of k, excluding both 1 and n from the sum.

Original entry on oeis.org

1, 2, 3, 2, 5, 5, 7, 5, 3, 7, 11, 5, 13, 3, 5, 3, 17, 7, 19, 7, 7, 13, 23, 5, 5, 5, 5, 5, 29, 41, 31, 41, 3, 19, 5, 7, 37, 7, 3, 7, 41, 53, 43, 3, 41, 5, 47, -1, 7, 53, 7, 41, 53, 7, 3, 7, 13, 31, 59, 107, 61, 3, 7, 3, 7, 7, 67, 13, 5, 73, 71, 7, 73, 3, -1, 7, 7, 89, 79, 41, 3, 43, 83, 139, 13
Offset: 1

Views

Author

Andrew Carter (acarter09(AT)newarka.edu), Dec 16 2008

Keywords

Examples

			a(18) -> {2,3,6,9} -> 20 -> {2,4,5,10} -> 21 -> {3,7} -> 10 -> {2,5} -> 7 = 7.
		

Crossrefs

Programs

  • Maple
    f := proc(n) L := {} ; a := n ; while not isprime(a) do a := A048050(a) ; if a in L then RETURN(-1) ; fi; L := L union {a} ; od; a ; end:
    A048050 := proc(n) numtheory[sigma](n)-n-1 ; end:
    A153023 := proc(n) if n =1 then 1; elif isprime(n) then n; else f(n) ; fi; end: # R. J. Mathar, Dec 19 2008
  • Mathematica
    Table[If[! CompositeQ[n], n, NestWhile[DivisorSigma[1, #] - (# + 1) &, n, Nor[PrimeQ@ #, # == 0] &, 1, 100] /. k_ /; CompositeQ@ k -> -1], {n, 85}] (* Michael De Vlieger, Nov 03 2017 *)
  • Scheme
    (define (A153023 n) (let loop ((n n) (visited (list n))) (let ((next (A048050 n))) (cond ((or (= 1 n) (= 1 (A010051 n))) n) ((member next visited) -1) (else (loop next (cons next visited)))))))
    (define (A048050 n) (if (= 1 n) 0 (- (A001065 n) 1)))
    (define (A001065 n) (- (A000203 n) n)) ;; For an implementation of A000203, see under that entry.
    ;; Antti Karttunen, Nov 03 2017

Extensions

Extended by R. J. Mathar, Dec 19 2008
Description clarified by Antti Karttunen, Nov 03 2017

A153024 a(n) is the number of iterations of the map k -> A048050(k) to reach zero. If we never reach 0, then a(n) = -1. A048050 gives the sum of proper divisors of k, excluding both 1 and n from the sum.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 5, 1, 3, 4, 4, 1, 5, 1, 4, 3, 2, 1, 7, 2, 5, 6, 7, 1, 2, 1, 3, 4, 2, 6, 8, 1, 4, 5, 3, 1, 2, 1, 6, 4, 3, 1, -1, 2, 3, 5, 5, 1, 7, 5, 5, 3, 2, 1, 2, 1, 5, 4, 6, 6, 7, 1, 4, 6, 2, 1, 6, 1, 6, -1, 5, 6, 2, 1, 7, 6, 2, 1, 2, 3, 5, 4, 6, 1, 9, 5, -1, 3, 3, 8, 10, 1, 7, 6, 5, 1, 2, 1, 7, 6
Offset: 1

Views

Author

Andrew Carter (acarter09(AT)newarka.edu), Dec 16 2008

Keywords

Comments

Previous name was: The number of iterations for A153023 to converge when started at n.

Examples

			With m(n) = A048050(n) we have: m(18) -> m(20) -> m(21) -> m(10) -> m(7) -> 0, thus a(18) = 5.
On the other hand, m(48) = 75 and m(75) = 48, so we ended in a cycle, thus a(48) = a(75) = -1. - Edited by _Antti Karttunen_, Nov 03 2017
		

Crossrefs

Programs

  • Maple
    f := proc(n) L := {} ; a := n ; while not isprime(a) do a := A048050(a) ; if a in L then RETURN(-1) ; fi; L := L union {a} ; od; 1+nops(L) ; end:
    A153023 := proc(n) if n =1 then 1; elif isprime(n) then 1; else f(n) ; fi; end: # R. J. Mathar, May 25 2013
  • Mathematica
    With[{nn = 100}, Table[If[! CompositeQ[n], 1, Length@ NestWhileList[DivisorSigma[1, #] - (# + 1) &, n, Nor[PrimeQ@ #, # == 0] &, 1, 100]] /. k_ /; k == nn + 1 -> -1, {n, 104}]] (* Michael De Vlieger, Nov 03 2017 *)
  • Scheme
    (define (A153024 n) (let loop ((n n) (visited (list n)) (i 0)) (let ((next (A048050 n))) (cond ((zero? n) i) ((member next visited) -1) (else (loop next (cons next visited) (+ 1 i)))))))
    (define (A048050 n) (if (= 1 n) 0 (- (A001065 n) 1)))
    (define (A001065 n) (- (A000203 n) n)) ;; For an implementation of A000203, see under that entry.
    ;; Antti Karttunen, Nov 03 2017

Extensions

Name changed and more terms added by Antti Karttunen, Nov 03 2017

A187087 Positive squares in the order of their appearance in A048050.

Original entry on oeis.org

9, 16, 49, 25, 16, 49, 64, 121, 36, 81, 64, 169, 36, 225, 100, 225, 64, 36, 441, 36, 169, 361, 225, 144, 441, 441, 144, 256, 400, 196, 64, 441, 144, 361, 64, 400, 441, 729, 961, 64, 196, 144, 729, 100, 841, 729, 400, 256, 1225, 100, 729, 1225, 961, 900, 841
Offset: 1

Views

Author

Zak Seidov, Mar 04 2011

Keywords

Comments

Corresponding values of n are in A187086. A048050 is Chowla's function: sum of divisors of n except 1 and n.
By the Goldbach conjecture, every even square appears; take two odd primes p and q such that p+q = k^2, then Chowla function of p*q is k^2. It appears that 17^2 is the first odd square not in A048050.

Crossrefs

Programs

  • Magma
    A048050:=func< n | n eq 1 or IsPrime(n) select 0 else &+[ a: a in Divisors(n) | a ne 1 and a ne n ] >; [ a: n in [1..2500] | a gt 0 and IsSquare(a) where a is A048050(n) ]; // Klaus Brockhaus, Mar 04 2011
  • Mathematica
    chowla[n_] := DivisorSigma[1, n] - n - 1; s = {}; Do[c = chowla[n]; If[c > 0 && IntegerQ@Sqrt[c], AppendTo[s, c]], {n, 1, 10^3}]; s (* Amiram Eldar, Aug 28 2019 *)
  • PARI
    {for(n=1,2000,spf=sumdiv(n,x,x)-1-n;if(spf>0&&issquare(spf),print1(spf",")))}
    

A049030 Sum of sigma(j) for 1<=j<10^n, where sigma(j) = A048050(j) is the sum of the proper divisors >1 of j (excluding 1 and n).

Original entry on oeis.org

16, 3034, 320243, 32226805, 3224444759, 322465138002, 32246681892518, 3224670122682648, 322467031114802292, 32246703322412473945, 3224670334023621455211, 322467033422357645316809, 32246703342390510922780778, 3224670334240928188556405242
Offset: 1

Views

Author

Keywords

Examples

			For n = 1, the sum of sigma(j), for j < 10 is 0 + 0 + 0 + 2 + 0 + 5 + 0 + 6 + 3 = 16, so a(1) = 16.
		

Crossrefs

Cf. A072691 (Pi^2/12).

Formula

At a(3) = 320243, for example, take a(3) from A049000: 820741 - 500498 = 320243. Compute 500498 from 999*1000/2 = 499500, split evenly and reverse to 500499 - 1 = 500498. Add a 9 and 0 for each successive term.
a(n) = A049000(n) - 10^n * (10^n + 1) / 2 + 2 ~ (Pi^2/12 - 1/2) * 10^(2*n). - Amiram Eldar, Feb 16 2020

Extensions

More terms from Amiram Eldar, Feb 16 2020

A062950 C(H(n)), where C(n) is Chowla's function (A048050) and H(n) is the half-totient function (A023022).

Original entry on oeis.org

-1, -1, 0, -1, 0, 0, 0, 0, 0, 0, 5, 0, 2, 2, 6, 0, 3, 2, 5, 0, 0, 2, 7, 5, 3, 5, 9, 2, 8, 6, 7, 6, 15, 5, 20, 3, 15, 6, 21, 5, 10, 7, 15, 0, 0, 6, 10, 7, 14, 15, 15, 3, 21, 15, 20, 9, 0, 6, 41, 8, 20, 14, 35, 7, 14, 14, 13, 15, 12, 15, 54, 20, 21, 20, 41, 15, 16, 14, 12, 21, 0, 15, 30, 10, 27, 21, 39, 15, 54, 13, 41, 0, 54, 14, 75, 10, 41, 21, 42, 14
Offset: 3

Views

Author

Jason Earls, Jul 21 2001

Keywords

Crossrefs

Programs

  • PARI
    C(n)=sigma(n)-n-1; H(n)=eulerphi(n)/2; j=[]; for(n=3,150,j=concat(j,C(H(n)))); j

A062984 a(n) = M(C(n)), where M(n) is Mertens's function (A002321) and C(n) is Chowla's function (A048050).

Original entry on oeis.org

0, 0, 0, 0, 0, -2, 0, -1, -1, -2, 0, -1, 0, -2, -2, -2, 0, -3, 0, -2, -1, -3, 0, -1, -2, -1, -2, -1, 0, -1, 0, -3, -2, -3, -2, -3, 0, -2, -1, -3, 0, -3, 0, 0, -4, -2, 0, -3, -2, -2, -3, -3, 0, 0, -1, -1, -1, -4, 0, -3, 0, -3, 0, -1, -2, -2, 0, -1, -1, -4, 0, -2, 0, 0, -3, -1, -2, -2, 0, -3, 0, -3, 0, -4, -1, -3, -4, -1, 0, -1, -3, -3, -2, -3
Offset: 1

Views

Author

Jason Earls, Jul 25 2001

Keywords

Crossrefs

Programs

  • Mathematica
    A062984[n_] := Sum[MoebiusMu[k], {k, DivisorSigma[1, n] - n - 1}];
    Array[A062984, 100] (* Paolo Xausa, May 03 2024 *)
  • PARI
    M(n)=sum(k=1,n,moebius(k));
    C(n)=sigma(n)-n-1;
    j=[]; for(n=1,350,j=concat(j,M(C(n)))); j
    
  • PARI
    { for (n=1, 2000, a=sum(k=1, sigma(n) - n - 1, moebius(k)); write("b062984.txt", n, " ", a) ) } \\ Harry J. Smith, Aug 15 2009

A063900 Numbers k such that sum of proper divisors or aliquot parts of k^2 (excluding 1) is a square, or A048050(k^2) is a square.

Original entry on oeis.org

866, 9271, 18167, 30887, 39959, 114607, 119279, 129911, 153631, 239111, 343207, 517591, 582583, 602159, 607340, 1202282, 1397863, 1729999, 1920647, 2533183, 2547119, 2558183, 5740127, 7122959, 9379871, 10218407, 10891103, 13549399
Offset: 1

Views

Author

Jason Earls, Aug 29 2001

Keywords

Crossrefs

Programs

  • Mathematica
    chowla[n_] := DivisorSigma[1, n] - n - 1; aQ[n_] := IntegerQ@Sqrt@chowla[n^2]; Select[Range[10^6], aQ] (* Amiram Eldar, Aug 30 2019 *)
  • PARI
    s(n)=sigma(n)-n-1;
    for(n=1,10^8, if(issquare(s(n^2)),print(n)))
    
  • PARI
    s(n)=sigma(n) - n - 1
    { n=0; for (m=1, 10^9, if(issquare(s(m^2)), write("b063900.txt", n++, " ", m); if (n==55, break)) ) } \\ Harry J. Smith, Sep 02 2009

Extensions

a(19)-a(28) from Harry J. Smith, Sep 02 2009
Showing 1-10 of 95 results. Next