cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A153023 If n is 1 or prime then a(n) = n. Otherwise, start with n and iterate the map k -> A048050(k) until we reach a prime p; then a(n) = p. If we never reach a prime, a(n) = -1. A048050 gives the sum of proper divisors of k, excluding both 1 and n from the sum.

Original entry on oeis.org

1, 2, 3, 2, 5, 5, 7, 5, 3, 7, 11, 5, 13, 3, 5, 3, 17, 7, 19, 7, 7, 13, 23, 5, 5, 5, 5, 5, 29, 41, 31, 41, 3, 19, 5, 7, 37, 7, 3, 7, 41, 53, 43, 3, 41, 5, 47, -1, 7, 53, 7, 41, 53, 7, 3, 7, 13, 31, 59, 107, 61, 3, 7, 3, 7, 7, 67, 13, 5, 73, 71, 7, 73, 3, -1, 7, 7, 89, 79, 41, 3, 43, 83, 139, 13
Offset: 1

Views

Author

Andrew Carter (acarter09(AT)newarka.edu), Dec 16 2008

Keywords

Examples

			a(18) -> {2,3,6,9} -> 20 -> {2,4,5,10} -> 21 -> {3,7} -> 10 -> {2,5} -> 7 = 7.
		

Crossrefs

Programs

  • Maple
    f := proc(n) L := {} ; a := n ; while not isprime(a) do a := A048050(a) ; if a in L then RETURN(-1) ; fi; L := L union {a} ; od; a ; end:
    A048050 := proc(n) numtheory[sigma](n)-n-1 ; end:
    A153023 := proc(n) if n =1 then 1; elif isprime(n) then n; else f(n) ; fi; end: # R. J. Mathar, Dec 19 2008
  • Mathematica
    Table[If[! CompositeQ[n], n, NestWhile[DivisorSigma[1, #] - (# + 1) &, n, Nor[PrimeQ@ #, # == 0] &, 1, 100] /. k_ /; CompositeQ@ k -> -1], {n, 85}] (* Michael De Vlieger, Nov 03 2017 *)
  • Scheme
    (define (A153023 n) (let loop ((n n) (visited (list n))) (let ((next (A048050 n))) (cond ((or (= 1 n) (= 1 (A010051 n))) n) ((member next visited) -1) (else (loop next (cons next visited)))))))
    (define (A048050 n) (if (= 1 n) 0 (- (A001065 n) 1)))
    (define (A001065 n) (- (A000203 n) n)) ;; For an implementation of A000203, see under that entry.
    ;; Antti Karttunen, Nov 03 2017

Extensions

Extended by R. J. Mathar, Dec 19 2008
Description clarified by Antti Karttunen, Nov 03 2017
Showing 1-1 of 1 results.