cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A153024 a(n) is the number of iterations of the map k -> A048050(k) to reach zero. If we never reach 0, then a(n) = -1. A048050 gives the sum of proper divisors of k, excluding both 1 and n from the sum.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 5, 1, 3, 4, 4, 1, 5, 1, 4, 3, 2, 1, 7, 2, 5, 6, 7, 1, 2, 1, 3, 4, 2, 6, 8, 1, 4, 5, 3, 1, 2, 1, 6, 4, 3, 1, -1, 2, 3, 5, 5, 1, 7, 5, 5, 3, 2, 1, 2, 1, 5, 4, 6, 6, 7, 1, 4, 6, 2, 1, 6, 1, 6, -1, 5, 6, 2, 1, 7, 6, 2, 1, 2, 3, 5, 4, 6, 1, 9, 5, -1, 3, 3, 8, 10, 1, 7, 6, 5, 1, 2, 1, 7, 6
Offset: 1

Views

Author

Andrew Carter (acarter09(AT)newarka.edu), Dec 16 2008

Keywords

Comments

Previous name was: The number of iterations for A153023 to converge when started at n.

Examples

			With m(n) = A048050(n) we have: m(18) -> m(20) -> m(21) -> m(10) -> m(7) -> 0, thus a(18) = 5.
On the other hand, m(48) = 75 and m(75) = 48, so we ended in a cycle, thus a(48) = a(75) = -1. - Edited by _Antti Karttunen_, Nov 03 2017
		

Crossrefs

Programs

  • Maple
    f := proc(n) L := {} ; a := n ; while not isprime(a) do a := A048050(a) ; if a in L then RETURN(-1) ; fi; L := L union {a} ; od; 1+nops(L) ; end:
    A153023 := proc(n) if n =1 then 1; elif isprime(n) then 1; else f(n) ; fi; end: # R. J. Mathar, May 25 2013
  • Mathematica
    With[{nn = 100}, Table[If[! CompositeQ[n], 1, Length@ NestWhileList[DivisorSigma[1, #] - (# + 1) &, n, Nor[PrimeQ@ #, # == 0] &, 1, 100]] /. k_ /; k == nn + 1 -> -1, {n, 104}]] (* Michael De Vlieger, Nov 03 2017 *)
  • Scheme
    (define (A153024 n) (let loop ((n n) (visited (list n)) (i 0)) (let ((next (A048050 n))) (cond ((zero? n) i) ((member next visited) -1) (else (loop next (cons next visited) (+ 1 i)))))))
    (define (A048050 n) (if (= 1 n) 0 (- (A001065 n) 1)))
    (define (A001065 n) (- (A000203 n) n)) ;; For an implementation of A000203, see under that entry.
    ;; Antti Karttunen, Nov 03 2017

Extensions

Name changed and more terms added by Antti Karttunen, Nov 03 2017
Showing 1-1 of 1 results.