cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A163870 Triangle read by rows: row n lists the nontrivial divisors of the n-th composite.

Original entry on oeis.org

2, 2, 3, 2, 4, 3, 2, 5, 2, 3, 4, 6, 2, 7, 3, 5, 2, 4, 8, 2, 3, 6, 9, 2, 4, 5, 10, 3, 7, 2, 11, 2, 3, 4, 6, 8, 12, 5, 2, 13, 3, 9, 2, 4, 7, 14, 2, 3, 5, 6, 10, 15, 2, 4, 8, 16, 3, 11, 2, 17, 5, 7, 2, 3, 4, 6, 9, 12, 18, 2, 19, 3, 13, 2, 4, 5, 8, 10, 20, 2, 3, 6, 7, 14, 21, 2, 4, 11, 22, 3, 5, 9, 15, 2, 23
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Aug 06 2009

Keywords

Comments

Row n contains row A002808(n) of table A027750.
T(n,k) = A027751(A002808(n),k+1), k = 1..A144925(n). - Reinhard Zumkeller, Mar 29 2014

Examples

			The table starts in row n=1 (with the composite 4) as
  2;
  2,3;
  2,4;
  3;
  2,5;
  2,3,4,6;
  2,7;
  3,5;
  2,4,8;
  2,3,6,9;
  2,4,5,10.
		

Crossrefs

Cf. A144925 (row lengths), A062825 (row sums), A056608 (left edge), A160180 (right edge).

Programs

  • Haskell
    a163870 n k = a163870_tabf !! (n-1) !! (k-1)
    a163870_row n = a163870_tabf !! (n-1)
    a163870_tabf = filter (not . null) $ map tail a027751_tabf
    -- Reinhard Zumkeller, Mar 29 2014
    
  • Mathematica
    Divisors[Select[Range[50], CompositeQ]][[All, 2 ;; -2]] (* Paolo Xausa, Dec 26 2024 *)
  • Python
    from itertools import islice
    def g():
        n, j = 1, 2
        while True:
            n = (n << 1) | 1
            p = 1
            for k in range(2, (j >> 1) + 1):
                p = (p << 1) | 1
                if n % p == 0: yield k
            j+=1
    print(list(islice(g(),95))) # DarĂ­o Clavijo, Dec 16 2024

Extensions

Entries checked by R. J. Mathar, Sep 22 2009

A163871 The n-th composite plus the sum of its nontrivial divisors.

Original entry on oeis.org

6, 11, 14, 12, 17, 27, 23, 23, 30, 38, 41, 31, 35, 59, 30, 41, 39, 55, 71, 62, 47, 53, 47, 90, 59, 55, 89, 95, 83, 77, 71, 123, 56, 92, 71, 97, 119, 71, 119, 79, 89, 167, 95, 103, 126, 83, 143, 125, 95, 143, 194, 113, 123, 139, 95, 167, 185, 120, 125, 223, 107, 131, 119, 179
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Aug 06 2009

Keywords

Comments

Trivial divisors of a number are 1 and the number itself, see A048050.

Examples

			a(1) = 4 + 2 =  6;
a(2) = 6 + 5 = 11;
a(3) = 8 + 6 = 14.
		

Crossrefs

Cf. A027750.

Programs

  • Maple
    A002808 := proc(n) local resul,i ; i := 1 ; resul := 4 ; while i < n do resul := resul+1 ; while isprime(resul) do resul := resul+1 ; od ; i := i+1 ; od; RETURN(resul) ; end:
    A048050 := proc(n) if n <= 3 then 0; else numtheory[sigma](n)-n-1 ; fi; end:
    A163871 := proc(n) A002808(n)+A048050(A002808(n)) ; end: seq(A163871(n),n=1..80) ; # R. J. Mathar, Aug 11 2009
  • Mathematica
    #+Total[Most[Rest[Divisors[#]]]]&/@Select[Range[4,200],!PrimeQ[#]&] (* Harvey P. Dale, Oct 28 2013 *)

Formula

a(n) = A002808(n) + A062825(n+1).

Extensions

a(4) corrected by R. J. Mathar, Aug 11 2009
Showing 1-2 of 2 results.