cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A048050 Chowla's function: sum of divisors of n except for 1 and n.

Original entry on oeis.org

0, 0, 0, 2, 0, 5, 0, 6, 3, 7, 0, 15, 0, 9, 8, 14, 0, 20, 0, 21, 10, 13, 0, 35, 5, 15, 12, 27, 0, 41, 0, 30, 14, 19, 12, 54, 0, 21, 16, 49, 0, 53, 0, 39, 32, 25, 0, 75, 7, 42, 20, 45, 0, 65, 16, 63, 22, 31, 0, 107, 0, 33, 40, 62, 18, 77, 0, 57, 26, 73, 0, 122, 0, 39, 48, 63, 18, 89
Offset: 1

Views

Author

Keywords

Comments

a(n) = 0 if and only if n is a noncomposite number (cf. A008578). - Omar E. Pol, Jul 31 2012
If n is semiprime, a(n) = A008472(n). - Wesley Ivan Hurt, Aug 22 2013
If n = p*q where p and q are distinct primes then a(n) = p+q.
If k,m > 1 are coprime, then a(k*m) = a(k)*a(m) + (m+1)*a(k) + (k+1)*a(m) + k + m. - Robert Israel, Apr 28 2015
a(n) is also the total number of parts in the partitions of n into equal parts that contain neither 1 nor n as a part (see example). More generally, a(n) is the total number of parts congruent to 0 mod k in the partitions of k*n into equal parts that contain neither k nor k*n as a part. - Omar E. Pol, Nov 24 2019
Named after the Indian-American mathematician Sarvadaman D. S. Chowla (1907-1995). - Amiram Eldar, Mar 09 2024

Examples

			For n = 20 the divisors of 20 are 1,2,4,5,10,20, so a(20) = 2+4+5+10 = 21.
On the other hand, the partitions of 20 into equal parts that contain neither 1 nor 20 as a part are [10,10], [5,5,5,5], [4,4,4,4,4], [2,2,2,2,2,2,2,2,2,2]. There are 21 parts, so a(20) = 21. - _Omar E. Pol_, Nov 24 2019
		

References

  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 92.

Crossrefs

Programs

  • Haskell
    a048050 1 = 0
    a048050 n = (subtract 1) $ sum $ a027751_row n
    -- Reinhard Zumkeller, Feb 09 2013
    
  • Magma
    A048050:=func< n | n eq 1 or IsPrime(n) select 0 else &+[ a: a in Divisors(n) | a ne 1 and a ne n ] >; [ A048050(n): n in [1..100] ]; // Klaus Brockhaus, Mar 04 2011
    
  • Maple
    A048050 := proc(n) if n > 1 then numtheory[sigma](n)-1-n ; else 0; end if; end proc:
  • Mathematica
    f[n_]:=Plus@@Divisors[n]-n-1; Table[f[n],{n,100}] (*Vladimir Joseph Stephan Orlovsky, Sep 13 2009*)
    Join[{0},DivisorSigma[1,#]-#-1&/@Range[2,80]] (* Harvey P. Dale, Feb 25 2015 *)
  • PARI
    a(n)=if(n>1,sigma(n)-n-1,0) \\ Charles R Greathouse IV, Nov 20 2012
    
  • Python
    from sympy import divisors
    def a(n): return sum(divisors(n)[1:-1]) # Indranil Ghosh, Apr 26 2017
    
  • Python
    from sympy import divisor_sigma
    def A048050(n): return 0 if n == 1 else divisor_sigma(n)-n-1 # Chai Wah Wu, Apr 18 2021

Formula

a(n) = A000203(n) - A065475(n).
a(n) = A001065(n) - 1, n > 1.
For n > 1: a(n) = Sum_{k=2..A000005(n)-1} A027750(n,k). - Reinhard Zumkeller, Feb 09 2013
a(n) = A000203(n) - n - 1, n > 1. - Wesley Ivan Hurt, Aug 22 2013
G.f.: Sum_{k>=2} k*x^(2*k)/(1 - x^k). - Ilya Gutkovskiy, Jan 22 2017

A003502 The smaller of a betrothed pair.

Original entry on oeis.org

48, 140, 1050, 1575, 2024, 5775, 8892, 9504, 62744, 186615, 196664, 199760, 266000, 312620, 526575, 573560, 587460, 1000824, 1081184, 1139144, 1140020, 1173704, 1208504, 1233056, 1236536, 1279950, 1921185, 2036420, 2102750, 2140215, 2171240, 2198504, 2312024
Offset: 1

Views

Author

Keywords

Examples

			48 is a term because sigma(48) - 48 - 1 = 124 - 48 - 1 = 75 and 48 < 75 and sigma(75) - 75 - 1 = 124 - 75 - 1 = 48. - _David A. Corneth_, Jan 24 2019
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, B5.

Crossrefs

Programs

  • Mathematica
    aapQ[n_] := Module[{c=DivisorSigma[1, n]-1-n}, c!=n&&DivisorSigma[ 1, c]-1-c == n]; Transpose[Union[Sort[{#, DivisorSigma[1, #]-1-#}]&/@Select[Range[2, 10000], aapQ]]] [[1]] (* Amiram Eldar, Jan 24 2019 after Harvey P. Dale at A007992 *)
  • PARI
    is(n) = m = sigma(n) - n - 1; if(m == 0 || n >= m, return(0)); n == sigma(m) - m - 1 \\ David A. Corneth, Jan 24 2019

Extensions

Computed by Fred W. Helenius (fredh(AT)ix.netcom.com)
Extended by T. D. Noe, Dec 29 2011

A003503 The larger of a betrothed pair.

Original entry on oeis.org

75, 195, 1925, 1648, 2295, 6128, 16587, 20735, 75495, 206504, 219975, 309135, 507759, 549219, 544784, 817479, 1057595, 1902215, 1331967, 1159095, 1763019, 1341495, 1348935, 1524831, 1459143, 2576945, 2226014, 2681019, 2142945, 2421704, 3220119, 3123735
Offset: 1

Views

Author

Keywords

Comments

It has been shown that (1) all known betrothed pairs are of opposite parity and (2) if a and b are a betrothed pair, and if a < b are of the same parity, then a > 10^10. See the reference for the Hagis & Lord paper. Can it be shown that all betrothed pairs are of opposite parity? - Harvey P. Dale, Apr 07 2013
From David A. Corneth, Jan 26 2019: (Start)
Let (k, m) be a betrothed pair. Then sigma(k) = sigma(m). Proof:
k = sigma(m) - m - 1 (1)
m = sigma(k) - k - 1 (2)
Partially substituting (1) in (2) gives
m = sigma(k) - (sigma(m) - m - 1) - 1 = sigma(k) - sigma(m) + m + 1 - 1 which simplifies to sigma(k) = sigma(m). QED.
If k and m are odd then they are both square. If k and m are even then they are square or twice a square (not necessarily both in the same family).
Proof: sigma(k) is odd iff k is a square or twice a square (cf. A028982). Hence if k isn't of that form (and sigma(k) is even) then the parity of sigma(k) - k - 1 is odd for odd k and even for even k.
If k is an odd square then sigma(k) - k - 1 is odd.
If k is twice a square or an even square then sigma(k) - k - 1 is even. QED.
Using inspection and the results above, if k and m are a betrothed pair of the same parity, the minimal term is > 2*10^14. (End)

Examples

			75 is a term because sigma(75) - 75 - 1 = 124 - 75 - 1 = 48 and 75 > 48 and sigma(48) - 48 - 1 = 124 - 48 - 1 = 75. - _David A. Corneth_, Jan 24 2019
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, B5.

Crossrefs

Programs

  • Mathematica
    aapQ[n_] := Module[{c=DivisorSigma[1, n]-1-n}, c!=n&&DivisorSigma[ 1, c]-1-c == n]; Transpose[Union[Sort[{#, DivisorSigma[1, #]-1-#}]&/@Select[Range[2, 10000], aapQ]]][[2]] (* Amiram Eldar, Jan 24 2019 after Harvey P. Dale at A015630 *)
  • PARI
    is(n) = m = sigma(n) - n - 1; if(m < 1 || n <= m, return(0)); n == sigma(m) - m - 1 \\ David A. Corneth, Jan 24 2019

Extensions

Computed by Fred W. Helenius (fredh(AT)ix.netcom.com)
Extended by T. D. Noe, Dec 29 2011

A057533 Values of n for which iteration of Chowla's function loops.

Original entry on oeis.org

48, 75, 92, 140, 146, 176, 195, 215, 255, 267, 287, 312, 332, 369, 386, 407, 411, 519, 527, 551, 627, 734, 744, 818, 972, 973, 984, 1027, 1050, 1078, 1096, 1149, 1175, 1185, 1387, 1408, 1472, 1474, 1535, 1575, 1648, 1651, 1784, 1792, 1880, 1888, 1891
Offset: 1

Views

Author

Asher Auel, Sep 03 2000

Keywords

Comments

Chowla's function (A048050) = sum of divisors of n except 1 and n.

Crossrefs

Cf. A048050.
Cf. A005276 (subsequence). - Reinhard Zumkeller, Feb 09 2013

Programs

  • Haskell
    a057533 n = a057533_list !! (n-1)
    a057533_list = filter (\z -> p z [z]) [1..] where
       p x ts = y > 0 && (y `elem` ts || p y (y:ts)) where y = a048050 x
    -- Reinhard Zumkeller, Feb 09 2013

A192292 Pairs of numbers a, b for which sigma*(a)=b and sigma(b)-b-1=a, where sigma*(n) is the sum of the anti-divisors of n.

Original entry on oeis.org

7, 10, 14, 16, 45, 86, 2379, 2324, 4213, 5866, 27323, 33604, 1303227, 1737628, 3722831, 4208308, 15752651, 18706108, 6094085371, 8114352508, 30090695519, 40119052564
Offset: 1

Views

Author

Paolo P. Lava, Jun 29 2011

Keywords

Comments

Betrothed numbers mixed with anti-divisors.
a(23) > 10^11. - Hiroaki Yamanouchi, Sep 28 2015

Examples

			sigma*(45)= 2+6+7+10+13+18+30 = 86.
sigma(86)-86-1 = 2+43 = 45.
sigma*(2379) = 2+6+26+67+71+78+122+366+1586 = 2374.
sigma(2324)-2324-1 = 2+4+7+14+28+83+166+332+581+1162 = 2379.
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:= proc(n) local b,c,i,j,k;
    for i from 3 to n do k:=0; j:=i;
    while j mod 2 <> 1 do k:=k+1; j:=j/2; od;
    b:=sigma(2*i+1)+sigma(2*i-1)+sigma(i/2^k)*2^(k+1)-6*i-2;
    if sigma(b)-b-1=i then print(i); print(b); fi;
    od; end: P(10^9);

Extensions

a(13)-a(14) from Paolo P. Lava, Dec 03 2014
a(7)-a(8) swapped and a(15)-a(22) added by Hiroaki Yamanouchi, Sep 28 2015

A285889 The smaller of the lexicographically least pair (x, y) such that 0 < x < y and sigma(x) = sigma(y) = n + x + y.

Original entry on oeis.org

220, 48, 174, 390, 102, 280, 160, 500, 66, 132, 54, 24280, 992, 560, 140, 168, 60, 10360, 1120, 1232, 198, 210, 132, 2170, 520, 1520, 96, 168, 330, 732, 60, 4424, 270, 540, 144, 1000, 1484, 4080, 220, 840, 1144, 16500, 1988, 5456, 210, 528, 150, 4158, 1180, 12236
Offset: 0

Views

Author

Paolo P. Lava, Apr 28 2017

Keywords

Comments

In the first 1000 terms the most repeated number is 840 with 15 occurrences.

Examples

			a(0) = 220: sigma(220) = sigma(284) = 220 + 284 = 504;
a(1) = 48: sigma(48) = sigma(75) = 48 + 75 + 1 = 124;
a(2) = 174: sigma(174) = sigma(184) = 174 + 184 + 2 = 360.
		

Crossrefs

See first terms of A002025 and A005276.

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,b,k,n; for n from 0 to q do for k from 1 to q do
    a:=sigma(k)-k-n; b:=sigma(a)-a-n; if a>0 and b=k and a<>b then print(k); break;
    fi; od; od; end: P(10^9);
  • Mathematica
    Table[m = 1; While[MissingQ@ Set[k, SelectFirst[Range[m - 1], DivisorSigma[1, m] == DivisorSigma[1, #] == m + # + n &]], m++]; {k, m}, {n, 0, 10}][[All, 1]] (* Version 10.2, or *)
    Do[m = 1; While[Set[k, Module[{k = 1}, While[! Xor[DivisorSigma[1, m] == DivisorSigma[1, k] == m + k + n, k >= m], k++]; k]] >= m, m++]; Print@ k, {n, 0, 10}] (* Michael De Vlieger, Apr 28 2017 *)
  • PARI
    getfirstterms(n)={my(L:list,S:list,k:small,t);L=List();S=List([1,3]);k=0;forstep(i=3,+oo,1,listput(S,sigma(i));forvec(j=[[2,i],[2,i]],t=vecsum(j)+k;if((S[j[1]]==t)&&(t==S[j[2]]),listput(L,j[1]);if(k==n,break(2),k++)),2));return(Vec(L))} \\ R. J. Cano, May 03 2017

A239436 Members of a pair (m,k) such that sigma(m) = sigma(k) = sigma(m+k), m < k where sigma = A000203.

Original entry on oeis.org

1288, 1485, 5775, 6128, 8008, 11685, 16744, 19305, 21896, 25245, 24472, 28215, 26488, 35505, 32620, 45441, 37352, 43065, 39928, 46035, 47656, 54945, 50260, 65637, 52808, 60885, 55384, 63855, 62744, 75495, 72772, 79365, 68264, 78705, 75075, 79664, 80584, 90915
Offset: 1

Views

Author

Michel Lagneau, Mar 18 2014

Keywords

Comments

The numbers such that sigma(k) = sigma(m) = m+k+1 and m+k is prime are in the sequence since sigma(k+m) = m+k+1 (see A005276). - Giovanni Resta, Mar 20 2014

Examples

			The pair (1288, 1485) is in the sequence because sigma(1288) = sigma(1485) = 2880 and sigma(1288+1485) = sigma(2773) = 2880.
		

Crossrefs

Programs

  • Mathematica
    a[n1_, n2_] := (t = Table[{DivisorSigma[1, n], n}, {n, n1, n2}] // Sort; s = Select[Split[t, #1[[1]] == #2[[1]] &], Length[#] >= 2 &]; f[lst_] := Select[Table[{lst[[i]], lst[[j]]}, {i, 1, Length[lst] - 1}, {j, i + 1, Length[lst]}] // Flatten[#, 1] &, #[[1, 1]] == DivisorSigma[1, #[[1, 2]] + #[[2, 2]]] &]; Select[f /@ s, # != {} &]); Flatten[a[1, 10^5], 2][[All, 2]] (* Jean-François Alcover, Mar 20 2014 *)

Extensions

More terms from Jean-François Alcover, Mar 20 2014

A126160 Number of betrothed pairs (m,n) with m <=10^k (and k=1,2,3,...), where a betrothed pair satisfies sigma(m)=sigma(n)=m+n+1 and m

Original entry on oeis.org

0, 1, 2, 8, 9, 17, 46, 79, 180, 404, 882, 1946, 4122
Offset: 1

Views

Author

Ant King, Dec 19 2006

Keywords

Comments

Also called quasi-amicable pairs, or reduced amicable pairs.

Examples

			a(7)=46 because there are 46 betrothed pairs (m,n) with m<=10^7
		

Crossrefs

Programs

  • Mathematica
    s[n_]:=DivisorSigma[1,n]-n;BetrothedNumberQ[n_]:=If[s[s[n]-1]==n+1 && n>1,True,False];BetrothedPairList[k_]:=(anlist=Select[Range[k],BetrothedNumberQ[ # ] &]; prlist=Table[Sort[{anlist[[n]],s[anlist[[n]]]-1}],{n,1,Length[anlist]}]; Union[prlist,prlist]);data=BetrothedPairList[10^6];Table[Length[Select[data,First[ # ]<10^k &]],{k,1,6}]

Extensions

a(13) from Giovanni Resta, Jul 24 2019

A179612 Sums of pairs of betrothed (or quasi-amicable) numbers.

Original entry on oeis.org

123, 335, 2975, 3223, 4319, 11903, 25479, 30239, 138239, 393119, 416639, 508895, 773759, 861839, 1071359, 1391039, 1645055, 2903039, 2413151, 2298239, 2903039, 2515199, 2557439, 2757887, 2695679, 3856895, 4147199, 4717439, 4245695, 4561919, 5391359, 5322239
Offset: 1

Views

Author

Jonathan Vos Post, Jan 08 2011

Keywords

Comments

This is to A161005 sums of pairs of amicable numbers as betrothed (or quasi-amicable) numbers A005276 are to A063990 amicable numbers. The subsequence of primes begins: 11903, 138239, 1071359.

Examples

			a(1) = 48 + 75 = 123 = 3 * 41.
a(2) = 140 + 195 = 335 = 5 * 67.
a(6) = 5775 + 6128 = 11903 is the smallest prime in these pair-sums.
		

Crossrefs

Formula

a(n) = A003502(n) + A003503(n). {(j + k) such that sigma(j)=sigma(k)=j+k+1, where sigma=A000203}.

Extensions

More terms from Amiram Eldar, Jan 27 2019

A309227 Quasi-sociable numbers.

Original entry on oeis.org

1215571544, 1270824975, 1467511664, 1512587175, 1530808335, 1579407344, 1638031815, 1727239544
Offset: 1

Views

Author

Donghwi Park, Jul 16 2019

Keywords

Comments

The smallest quasi-sociable number cycle is {1215571544, 1270824975, 1467511664, 1530808335, 1579407344, 1638031815, 1727239544, 151258717, 1215571544}. They are the only known quasi-sociable numbers in 2019.
a(9) > 10^12, if it exists. - Giovanni Resta, Jul 25 2019

Examples

			1215571544 = 2^3 * 11 * 13813313
1270824975 = 3^2 * 5^2 * 7 * 19 * 42467
1467511664 = 2^4 * 19 * 599 * 8059
1530808335 = 3^3 * 5 * 7 * 1619903
1579407344 = 2^4 * 31^2 * 59 * 1741
1638031815 = 3^4 * 5 * 7 * 521 * 1109
1727239544 = 2^3 * 2671 * 80833
1512587175 = 3 * 5^2 * 11 * 1833439
		

Crossrefs

Cf. A122726 (sociable numbers), A005276 (betrothed (or quasi-amicable) numbers).
Showing 1-10 of 14 results. Next