cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A120113 Bi-diagonal inverse of number triangle A120101.

Original entry on oeis.org

1, -6, 1, 0, -5, 1, 0, 0, -14, 1, 0, 0, 0, -3, 1, 0, 0, 0, 0, -11, 1, 0, 0, 0, 0, 0, -13, 1, 0, 0, 0, 0, 0, 0, -2, 1, 0, 0, 0, 0, 0, 0, 0, -17, 1, 0, 0, 0, 0, 0, 0, 0, 0, -19, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1
Offset: 0

Views

Author

Paul Barry, Jun 09 2006

Keywords

Comments

Subdiagonal is -A120114(n-1).

Examples

			Triangle begins
   1;
  -6,  1;
   0, -5,   1;
   0,  0, -14,  1;
   0,  0,   0, -3,   1;
   0,  0,   0,  0, -11,   1;
   0,  0,   0,  0,   0, -13,  1;
   0,  0,   0,  0,   0,   0, -2,   1;
   0,  0,   0,  0,   0,   0,  0, -17,   1;
   0,  0,   0,  0,   0,   0,  0,   0, -19,  1;
   0,  0,   0,  0,   0,   0,  0,   0,   0, -1,  1;
		

Crossrefs

Programs

  • Magma
    A120114:= func< n | Lcm([1..2*n+4])/Lcm([1..2*n+2]) >;
    A120113:= func< n,k | k eq n select 1 else k eq n-1 select -A120114(n-1) else 0 >;
    [A120113(n,k): k in [0..n], n in [0..16]]; // G. C. Greubel, May 05 2023
    
  • Mathematica
    A120114[n_]:= LCM@@Range[2*n+4]/(LCM@@Range[2*n+2]);
    A120113[n_, k_]:= If[k==n, 1, If[k==n-1, -A120114[n-1], 0]];
    Table[A120113[n, k], {n,0,16}, {k,0,n}]//Flatten
  • SageMath
    def A120113(n,k):
        if (kA120113(n,k) for k in range(n+1)] for n in range(17)]) # G. C. Greubel, May 05 2023

Formula

T(n, k) = 1 if k = n, T(n, k) = -A120114(n-1) if k = n-1, otherwise 0. - G. C. Greubel, May 05 2023

A051538 Least common multiple of {b(1),...,b(n)}, where b(k) = k(k+1)(2k+1)/6 = A000330(k).

Original entry on oeis.org

1, 5, 70, 210, 2310, 30030, 60060, 1021020, 19399380, 19399380, 446185740, 2230928700, 6692786100, 194090796900, 12033629407800, 12033629407800, 12033629407800, 445244288088600, 445244288088600, 18255015811632600
Offset: 1

Views

Author

Keywords

Comments

Also a(n) = lcm(1,...,(2n+2))/12. - Paul Barry, Jun 09 2006. Proof that this is the same sequence, from Martin Fuller, May 06 2007: k, k+1, 2k+1 are coprime so their lcm is the same as their product. Hence a(n) = lcm{k, k+1, 2k+1 | k=1..n}/6. {k, k+1, 2k+1 | k=1..n} = {1..2n+2 excluding even numbers >n+1}. Adding the higher even numbers to the set doubles the LCM. Hence lcm{k, k+1, 2k+1 | k=1..n}/6 = lcm{1..2n+2}/12.

Examples

			a(4) = lcm(1, 5, 14, 30) = 210.
		

Crossrefs

Second column of A120101.
Cf. A000330.
Cf. A051542 (LCM), A025555.

Programs

  • Haskell
    a051538 n = a051538_list !! (n-1)
    a051538_list = scanl1 lcm $ tail a000330_list
    -- Reinhard Zumkeller, Mar 12 2014
    
  • Magma
    [Lcm([1..2*n+2])/12: n in [1..30]]; // G. C. Greubel, May 03 2023
    
  • Mathematica
    Table[LCM@@Range[2n+2]/12,{n,30}] (* Harvey P. Dale, Apr 25 2011 *)
  • SageMath
    def A051538(n):
        return lcm(range(1,2*n+3))/12
    [A051538(n) for n in range(1,31)] # G. C. Greubel, May 03 2023

Extensions

Corrected by James Sellers
Edited by N. J. A. Sloane, May 06 2007

A120106 a(n) = Sum_{k=0..n} lcm(1..2n+2)/lcm(1..2k+2).

Original entry on oeis.org

1, 7, 36, 505, 1516, 16677, 216802, 433605, 7371286, 140054435, 140054436, 3221252029, 16106260146, 48318780439, 1401244632732, 86877167229385, 86877167229386, 86877167229387, 3214455187487320, 3214455187487321
Offset: 0

Views

Author

Paul Barry, Jun 09 2006

Keywords

Examples

			a(2) = lcm(1,2,3,4,5,6)*(1/lcm(1,2) + 1/lcm(1,2,3,4) + 1/lcm(1,2,3,4,5,6)) = 60 (1/2 + 1/12 + 1/60) = 60 * 3/5 = 36. - _Bernard Schott_, Feb 27 2019
		

Crossrefs

Row sums of number triangle A120101.

Programs

  • GAP
    List([0..20], n-> Sum([0..n], k-> Lcm(List([1..2*n+2],i->i) )/Lcm(List([1..2*k+2],i->i)))); # Muniru A Asiru, Feb 26 2019
    
  • Magma
    [(&+[ LCM([j: j in [1..2*n+2]])/LCM([j: j in [1..2*k+2]]): k in [0..n]]): n in [0..20]]; // G. C. Greubel, Feb 26 2019
    
  • Mathematica
    Table[Sum[(LCM@@Range[2n+2])/LCM@@Range[2k+2],{k,0,n}],{n,0,20}] (* Harvey P. Dale, Mar 25 2012 *)
  • PARI
    lcv(n) = lcm(vector(2*n+2, j, j));
    a(n) = lcv(n)*sum(k=0, n, 1/lcv(k)); \\ Michel Marcus, Feb 27 2019
  • Sage
    [sum(lcm(range(1,2*n+3))/lcm(range(1,2*k+3)) for k in (0..n)) for n in (0..20)] # G. C. Greubel, Feb 26 2019
    

A119634 a(n) = lcm(1,...,2n+2)/2.

Original entry on oeis.org

1, 6, 30, 420, 1260, 13860, 180180, 360360, 6126120, 116396280, 116396280, 2677114440, 13385572200, 40156716600, 1164544781400, 72201776446800, 72201776446800, 72201776446800, 2671465728531600, 2671465728531600
Offset: 0

Views

Author

Paul Barry, Jun 09 2006

Keywords

Crossrefs

Cf. A003418.
Column k=0 of A120101.

Programs

  • GAP
    List([0..20],n->Lcm(List([1..2*n+2]))/2); # Muniru A Asiru, Mar 04 2019
    
  • Magma
    [LCM([1..2*n+2])/2: n in [0..20]]; // G. C. Greubel, Mar 05 2019
    
  • Mathematica
    Table[LCM @@ Range[2*n + 2]/2, {n, 0, 20}] (* Vaclav Kotesovec, Mar 04 2019 *)
  • PARI
    {a(n) = lcm(vector(2*n+2, i, i))/2}; \\ G. C. Greubel, Mar 05 2019
    
  • Sage
    [lcm(range(1,2*n+3))/2 for n in (0..20)] # G. C. Greubel, Mar 05 2019

A120107 a(n) = Sum_{k=0..floor(n/2)} lcm(1,...,2*(n-k)+2)/lcm(1,...,2*k+2).

Original entry on oeis.org

1, 6, 31, 425, 1331, 14084, 182533, 390855, 6192220, 117429752, 136000866, 2700408581, 13835919839, 42477252404, 1171690228133, 72397239805085, 84274330442804, 86644937313210, 2686078920033439, 3119346038772923
Offset: 0

Views

Author

Paul Barry, Jun 09 2006

Keywords

Comments

Diagonal sums of number triangle A120101.

Crossrefs

Programs

  • GAP
    List([0..20],n->Sum([0..Int(n/2)],k->Lcm(List([1..2*(n-k)+2],i->i))/Lcm(List([1..2*k+2],i->i)))); # Muniru A Asiru, Mar 03 2019
    
  • Magma
    A120105:= func< n,k | Lcm([1..2*n+2])/Lcm([1..2*k+2]) >;
    [(&+[A120105(n-k,k): k in [0..Floor(n/2)]]): n in [0..50]]; // G. C. Greubel, May 04 2023
    
  • Mathematica
    A120105[n_, k_]:= LCM@@Range[2*n+2]/(LCM@@Range[2*k+2]);
    A120107[n_]:= Sum[A120105[n-k, k], {k, 0, Floor[n/2]}];
    Table[A120107[n], {n,0,50}] (* G. C. Greubel, May 04 2023 *)
  • PARI
    a(n) = sum(k=0, n\2, lcm([1..2*(n-k)+2])/lcm([1..2*k+2])); \\ Michel Marcus, Mar 04 2019
    
  • SageMath
    def f(n): return lcm(range(1,2*n+3))
    def A120107(n):
        return sum(f(n-k)/f(k) for k in range(1+(n//2)))
    [A120107(n) for n in range(51)] # G. C. Greubel, May 04 2023

Formula

a(n) = Sum_{k=0..floor(n/2)} A120105(n-k, k). - G. C. Greubel, May 04 2023

A119636 a(n) = lcm(1,...,2n+4)/((n+1)*binomial(2n+2, n+1)).

Original entry on oeis.org

6, 5, 14, 9, 22, 65, 30, 119, 532, 126, 690, 825, 594, 4147, 62062, 15015, 3640, 32708, 7956, 79458, 833340, 203490, 2337874, 4004231, 980628, 12738550, 3124550, 766935, 11113830, 166613265, 81940950
Offset: 0

Views

Author

Paul Barry, Jun 09 2006

Keywords

Comments

Subdiagonal of A120101.

Crossrefs

Cf. A068553.

Programs

  • GAP
    List([0..40],n->Lcm(List([1..2*n+4]))/((n+1)*Binomial(2*n+2,n+1))); # Muniru A Asiru, Mar 04 2019
    
  • Magma
    [Lcm([1..2*n+4])/((n+1)*Binomial(2*n+2, n+1)): n in [0..40]]; // G. C. Greubel, Mar 04 2019
  • Mathematica
    Table[LCM@@Range[2n+4]/((n+1)Binomial[2n+2,n+1]),{n,0,30}] (* Harvey P. Dale, Jun 08 2018 *)
  • Sage
    [lcm(range(1, 2*(n+2)+1))/((n+1)*binomial(2*n+2, n+1)) for n in (0..40)] # G. C. Greubel, Mar 04 2019
    
Showing 1-6 of 6 results.