cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A120101 Triangle T(n,k) = lcm(1,...,2*n+2)/((k+1)*binomial(2*k+2,k+1)).

Original entry on oeis.org

1, 6, 1, 30, 5, 1, 420, 70, 14, 3, 1260, 210, 42, 9, 2, 13860, 2310, 462, 99, 22, 5, 180180, 30030, 6006, 1287, 286, 65, 15, 360360, 60060, 12012, 2574, 572, 130, 30, 7, 6126120, 1021020, 204204, 43758, 9724, 2210, 510, 119, 28, 116396280, 19399380, 3879876, 831402, 184756, 41990, 9690, 2261, 532, 126
Offset: 0

Views

Author

Paul Barry, Jun 09 2006

Keywords

Comments

The rows give the coefficients of polynomials arising in the integration of x^(2m)/sqrt(4-x^2), m >= 0.

Examples

			Triangle begins:
       1;
       6,     1;
      30,     5,     1;
     420,    70,    14,    3;
    1260,   210,    42,    9,   2;
   13860,  2310,   462,   99,  22,   5;
  180180, 30030,  6006, 1287, 286,  65, 15;
  360360, 60060, 12012, 2574, 572, 130, 30, 7;
		

Crossrefs

First column is A119634. Second column is A051538. Main diagonal is A068553. Subdiagonal is A119636. Inverse is A120113. Row sums are A120106. Diagonal sums are A120107.

Programs

  • GAP
    Flat(List([0..9],n->List([0..n],k->Lcm(List([1..2*n+2],i->i))/((k+1)*Binomial(2*k+2,k+1))))); # Muniru A Asiru, Feb 26 2019
    
  • Magma
    [Lcm([1..2*n+2])/((k+1)*(k+2)*Catalan(k+1)): k in [0..n], n in [0..12]]; // G. C. Greubel, May 03 2023
    
  • Maple
    T:=(n,k)-> ilcm(seq(q,q=1..2*n+2))/((k+1)*binomial(2*k+2,k+1)): seq(seq(T(n,k),k=0..n),n=0..9); # Muniru A Asiru, Feb 26 2019
  • Mathematica
    Table[LCM@@Range[2*n+2]/((k+1)*Binomial[2*k+2,k+1]), {n,0,12}, {k,0, n}]//Flatten (* G. C. Greubel, May 03 2023 *)
  • SageMath
    def A120101(n,k):
        return lcm(range(1,2*n+3))/((k+1)*(k+2)*catalan_number(k+1))
    flatten([[A120101(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, May 03 2023

Formula

Number triangle T(n,k) = [k<=n] * lcm(1,...,2n+2)/((k+1)*binomial(2k+2, k+1)).

A120114 a(n) = lcm(1, ..., 2n+4)/lcm(1, ..., 2n+2).

Original entry on oeis.org

6, 5, 14, 3, 11, 13, 2, 17, 19, 1, 23, 5, 3, 29, 62, 1, 1, 37, 1, 41, 43, 1, 47, 7, 1, 53, 1, 1, 59, 61, 2, 1, 67, 1, 71, 73, 1, 1, 79, 3, 83, 1, 1, 89, 1, 1, 1, 97, 1, 101, 103, 1, 107, 109, 1, 113, 1, 1, 1, 11, 1, 5, 254, 1, 131, 1, 1, 137, 139, 1, 1, 1, 1
Offset: 0

Views

Author

Paul Barry, Jun 09 2006

Keywords

Comments

The subdiagonal of A120113 is -a(n).
From Robert Israel, Dec 03 2024: (Start)
a(n) is the product of the primes p such that 2*n + 3 or 2*n + 4 is a power of p.
Thus: a(n) = 1 if and only if neither 2*n + 3 nor 2*n + 4 is in A000961.
if n + 1 = 2^k - 1 is a Mersenne number but not a Mersenne prime, then a(n) = 2;
if n + 1 = 2^k - 1 is a Mersenne prime, then a(n) = 2 * (2^k - 1);
otherwise a(n) is odd. (End)
Conjectures from Davide Rotondo, Dec 02 2024: (Start)
Except for 2, if a(n) is even then a(n)/2 is a Mersenne prime.
If a(n)=1 or a(n)=2 then (n*2)+3 is in A061346, or also, or (n+1) is in A083390. (End)

Crossrefs

Programs

  • GAP
    List([0..75],n->Lcm(List([1..2*n+4],i->i))/Lcm(List([1..2*n+2],i->i))); # Muniru A Asiru, Mar 04 2019
    
  • Magma
    A120114:= func< n | Lcm([1..2*n+4])/Lcm([1..2*n+2]) >;
    [A120114(n): n in [0..100]]; // G. C. Greubel, May 05 2023
    
  • Maple
    f:= proc(n) local t,x,S;
       t:= 1;
       for x from 2*n+3 to 2*n+4 do
         S:= numtheory:-factorset(x);
         if nops(S) = 1 then t:= t*S[1] fi;
       od;
       t
    end proc:
    map(f, [$0..100]); # Robert Israel, Dec 03 2024
  • Mathematica
    Table[(LCM@@Range[2n+4])/LCM@@Range[2n+2],{n,0,100}] (* Harvey P. Dale, Dec 15 2017 *)
  • SageMath
    def A120114(n):
        return lcm(range(1,2*n+5)) // lcm(range(1,2*n+3))
    [A120114(n) for n in range(101)] # G. C. Greubel, May 05 2023

Formula

a(n) = A099996(n+2)/A099996(n+1). - Michel Marcus, May 06 2023

Extensions

More terms from Harvey P. Dale, Dec 15 2017
Showing 1-2 of 2 results.