A120101
Triangle T(n,k) = lcm(1,...,2*n+2)/((k+1)*binomial(2*k+2,k+1)).
Original entry on oeis.org
1, 6, 1, 30, 5, 1, 420, 70, 14, 3, 1260, 210, 42, 9, 2, 13860, 2310, 462, 99, 22, 5, 180180, 30030, 6006, 1287, 286, 65, 15, 360360, 60060, 12012, 2574, 572, 130, 30, 7, 6126120, 1021020, 204204, 43758, 9724, 2210, 510, 119, 28, 116396280, 19399380, 3879876, 831402, 184756, 41990, 9690, 2261, 532, 126
Offset: 0
Triangle begins:
1;
6, 1;
30, 5, 1;
420, 70, 14, 3;
1260, 210, 42, 9, 2;
13860, 2310, 462, 99, 22, 5;
180180, 30030, 6006, 1287, 286, 65, 15;
360360, 60060, 12012, 2574, 572, 130, 30, 7;
-
Flat(List([0..9],n->List([0..n],k->Lcm(List([1..2*n+2],i->i))/((k+1)*Binomial(2*k+2,k+1))))); # Muniru A Asiru, Feb 26 2019
-
[Lcm([1..2*n+2])/((k+1)*(k+2)*Catalan(k+1)): k in [0..n], n in [0..12]]; // G. C. Greubel, May 03 2023
-
T:=(n,k)-> ilcm(seq(q,q=1..2*n+2))/((k+1)*binomial(2*k+2,k+1)): seq(seq(T(n,k),k=0..n),n=0..9); # Muniru A Asiru, Feb 26 2019
-
Table[LCM@@Range[2*n+2]/((k+1)*Binomial[2*k+2,k+1]), {n,0,12}, {k,0, n}]//Flatten (* G. C. Greubel, May 03 2023 *)
-
def A120101(n,k):
return lcm(range(1,2*n+3))/((k+1)*(k+2)*catalan_number(k+1))
flatten([[A120101(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, May 03 2023
A120107
a(n) = Sum_{k=0..floor(n/2)} lcm(1,...,2*(n-k)+2)/lcm(1,...,2*k+2).
Original entry on oeis.org
1, 6, 31, 425, 1331, 14084, 182533, 390855, 6192220, 117429752, 136000866, 2700408581, 13835919839, 42477252404, 1171690228133, 72397239805085, 84274330442804, 86644937313210, 2686078920033439, 3119346038772923
Offset: 0
-
List([0..20],n->Sum([0..Int(n/2)],k->Lcm(List([1..2*(n-k)+2],i->i))/Lcm(List([1..2*k+2],i->i)))); # Muniru A Asiru, Mar 03 2019
-
A120105:= func< n,k | Lcm([1..2*n+2])/Lcm([1..2*k+2]) >;
[(&+[A120105(n-k,k): k in [0..Floor(n/2)]]): n in [0..50]]; // G. C. Greubel, May 04 2023
-
A120105[n_, k_]:= LCM@@Range[2*n+2]/(LCM@@Range[2*k+2]);
A120107[n_]:= Sum[A120105[n-k, k], {k, 0, Floor[n/2]}];
Table[A120107[n], {n,0,50}] (* G. C. Greubel, May 04 2023 *)
-
a(n) = sum(k=0, n\2, lcm([1..2*(n-k)+2])/lcm([1..2*k+2])); \\ Michel Marcus, Mar 04 2019
-
def f(n): return lcm(range(1,2*n+3))
def A120107(n):
return sum(f(n-k)/f(k) for k in range(1+(n//2)))
[A120107(n) for n in range(51)] # G. C. Greubel, May 04 2023
A120105
Number triangle T(n,k) = lcm(1,..,2*n+2)/lcm(1,..,2*k+2).
Original entry on oeis.org
1, 6, 1, 30, 5, 1, 420, 70, 14, 1, 1260, 210, 42, 3, 1, 13860, 2310, 462, 33, 11, 1, 180180, 30030, 6006, 429, 143, 13, 1, 360360, 60060, 12012, 858, 286, 26, 2, 1, 6126120, 1021020, 204204, 14586, 4862, 442, 34, 17, 1, 116396280, 19399380, 3879876, 277134, 92378, 8398, 646, 323, 19, 1
Offset: 0
Triangle begins:
1;
6, 1;
30, 5, 1;
420, 70, 14, 1;
1260, 210, 42, 3, 1;
13860, 2310, 462, 33, 11, 1;
180180, 30030, 6006, 429, 143, 13, 1;
-
Flat(List([0..9],n->List([0..n],k->Lcm(List([1..2*n+2],i->i))/Lcm(List([1..2*k+2],i->i))))); # Muniru A Asiru, Feb 26 2019
-
[Lcm([1..2*n+2])/Lcm([1..2*k+2]): k in [0..n], n in [0..12]]; // G. C. Greubel, May 04 2023
-
T:= (n,k)-> ilcm(seq(q,q=1..2*n+2))/ilcm(seq(r,r=1..2*k+2)):
seq(seq(T(n,k),k=0..n),n=0..9); # Muniru A Asiru, Feb 26 2019
-
T[n_, k_]:= LCM@@Range[2*n+2]/(LCM@@Range[2*k+2]);
Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, May 04 2023 *)
-
def f(n): return lcm(range(1,2*n+3))
def A120105(n,k):
return f(n)//f(k)
flatten([[A120105(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, May 04 2023
Showing 1-3 of 3 results.
Comments