A133459
Sums of two nonzero pentagonal pyramidal numbers.
Original entry on oeis.org
2, 7, 12, 19, 24, 36, 41, 46, 58, 76, 80, 81, 93, 115, 127, 132, 144, 150, 166, 197, 201, 202, 214, 236, 252, 271, 289, 294, 306, 322, 328, 363, 392, 406, 411, 414, 423, 445, 480, 484, 531, 551, 556, 568, 576, 590, 601, 625, 676, 693, 727, 732, 744, 746, 766
Offset: 1
-
nn = 12; Take[Union@ Map[Total, Tuples[#^2 (# + 1)/2 &@ Range@ nn, 2]], # (# - 1)/2 &[nn - 1]] (* Michael De Vlieger, Apr 16 2016 *)
A053719
Let Py(n)=A000330(n)=n-th square pyramidal number. Consider all integer triples (i,j,k), j >= k>0, with Py(i)=Py(j)+Py(k), ordered by increasing i; sequence gives i values.
Original entry on oeis.org
55, 70, 147, 226, 237, 275, 351, 409, 434, 610, 714, 717, 869, 934, 1085, 1369, 1490, 1602, 1643, 1954, 2363, 2405, 2534, 3020, 3241, 3450, 4017, 4039, 4060, 4140, 4796, 5766, 5830, 6412, 8601, 8635, 8855, 8885, 9423, 10083, 10224, 10809, 11115, 11935
Offset: 0
Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Feb 11 2000
Py(55) = 56980 = Py(45) + Py(42); Py(70) = 116795 = Py(69) + Py(24);
-
r[i_, j_] := Reduce[ j >= k > 0 && (2i + 1)*(i + 1)*i == (2j + 1)*(j + 1)*j + (2k + 1)*(k + 1)*k, k, Integers]; ijk = Reap[ Do[ If[ r[i, j] =!= False, sol = {i, j, k} /. ToRules[r[i, j]]; Print[sol]; Sow[sol]], {i, 1, 12000}, {j, Floor[4i/5], i-1}]][[2, 1]]; A053719 = ijk[[All, 1]]; A053720 = ijk[[All, 2]]; A053721 = ijk[[All, 3]]; (* Jean-François Alcover, Oct 17 2012 *)
A136359
Perfect squares in A133459; or perfect squares that are the sums of two nonzero pentagonal pyramidal numbers.
Original entry on oeis.org
36, 81, 144, 289, 484, 576, 625, 676, 3600, 7396, 9801, 14400, 35344, 40000, 40804, 44100, 45796, 56644, 59049, 71824, 112896, 121104, 172225, 226576, 231361, 254016, 274576, 290521, 319225, 362404, 480249, 495616, 518400, 527076, 535824
Offset: 1
A133459 begins {2, 7, 12, 19, 24, 36, 41, 46, 58, 76, 80, 81, 93, 115, 127, 132, 144, 150, 166, 197, 201, 202, 214, 236, 252, 271, 289, ...}.
Thus a(1) = 36, a(2) = 81, a(3) = 144, a(4) = 289 that are the perfect squares in A133459.
-
N:= 200: # for terms up to N^2*(N+1)/2.
PP:= [seq(i^2*(i+1)/2, i=1..N)]:
PP2:= sort(convert(select(`<=`,{seq(seq(PP[i]+PP[j],j=i..N),i=1..N)},PP[-1]),list)):
select(issqr,PP2); # Robert Israel, Feb 04 2020
-
Select[ Intersection[ Flatten[ Table[ i^2*(i+1)/2 + j^2*(j+1)/2, {i,1,300}, {j,1,i} ] ] ], IntegerQ[ Sqrt[ # ] ] & ]
A053720
Let Py(n)=A000330(n)=n-th square pyramidal number. Consider all integer triples (i,j,k), j >= k>0, with Py(i)=Py(j)+Py(k), ordered by increasing i; sequence gives j values.
Original entry on oeis.org
45, 69, 145, 212, 225, 224, 344, 395, 377, 522, 643, 715, 845, 909, 1082, 1292, 1479, 1547, 1363, 1830, 2290, 2204, 2315, 3017, 3195, 2804, 3293, 4035, 3642, 3394, 4047, 5084, 5309, 5550, 8406, 8631, 8697, 8073, 8728, 9940, 9005, 10804, 10471, 11571
Offset: 0
Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Feb 11 2000
Py(55) = 56980 = Py(45) + Py(42); Py(70) = 116795 = Py(69) + Py(24);
A136360
Square roots of the perfect squares in A133459.
Original entry on oeis.org
6, 9, 12, 17, 22, 24, 25, 26, 60, 86, 99, 120, 188, 200, 202, 210, 214, 238, 243, 268, 336, 348, 415, 476, 481, 504, 524, 539, 565, 602, 693, 704, 720, 726, 732, 846, 899, 961, 965, 990, 1026, 1202, 1218, 1221, 1224, 1320, 1551, 1602, 1687, 1716, 1724, 1734
Offset: 1
A133459 begins {2, 7, 12, 19, 24, 36, 41, 46, 58, 76, 80, 81, 93, 115, 127, 132, 144, 150, 166, 197, 201, 202, 214, 236, 252, 271, 289, ...}.
Thus a(1) = sqrt(36) = 6, a(2) = sqrt(81) = 9, a(3) = sqrt(144) = 12, a(4) = sqrt(289) = 17 that are the square roots of the perfect squares in A133459.
-
Sqrt[ Select[ Intersection[ Flatten[ Table[ i^2*(i+1)/2 + j^2*(j+1)/2, {i,1,300}, {j,1,i} ] ] ], IntegerQ[ Sqrt[ # ] ] & ] ]
A136361
Square roots of the perfect squares in A136360; or numbers k such that k^4 is in A133459 = the sums of two nonzero pentagonal pyramidal numbers.
Original entry on oeis.org
3, 5, 31, 132, 1068, 9672, 50664, 145060
Offset: 1
Showing 1-6 of 6 results.
Comments