A136361
Square roots of the perfect squares in A136360; or numbers k such that k^4 is in A133459 = the sums of two nonzero pentagonal pyramidal numbers.
Original entry on oeis.org
3, 5, 31, 132, 1068, 9672, 50664, 145060
Offset: 1
A136359
Perfect squares in A133459; or perfect squares that are the sums of two nonzero pentagonal pyramidal numbers.
Original entry on oeis.org
36, 81, 144, 289, 484, 576, 625, 676, 3600, 7396, 9801, 14400, 35344, 40000, 40804, 44100, 45796, 56644, 59049, 71824, 112896, 121104, 172225, 226576, 231361, 254016, 274576, 290521, 319225, 362404, 480249, 495616, 518400, 527076, 535824
Offset: 1
A133459 begins {2, 7, 12, 19, 24, 36, 41, 46, 58, 76, 80, 81, 93, 115, 127, 132, 144, 150, 166, 197, 201, 202, 214, 236, 252, 271, 289, ...}.
Thus a(1) = 36, a(2) = 81, a(3) = 144, a(4) = 289 that are the perfect squares in A133459.
-
N:= 200: # for terms up to N^2*(N+1)/2.
PP:= [seq(i^2*(i+1)/2, i=1..N)]:
PP2:= sort(convert(select(`<=`,{seq(seq(PP[i]+PP[j],j=i..N),i=1..N)},PP[-1]),list)):
select(issqr,PP2); # Robert Israel, Feb 04 2020
-
Select[ Intersection[ Flatten[ Table[ i^2*(i+1)/2 + j^2*(j+1)/2, {i,1,300}, {j,1,i} ] ] ], IntegerQ[ Sqrt[ # ] ] & ]
Showing 1-2 of 2 results.
Comments