A136359 Perfect squares in A133459; or perfect squares that are the sums of two nonzero pentagonal pyramidal numbers.
36, 81, 144, 289, 484, 576, 625, 676, 3600, 7396, 9801, 14400, 35344, 40000, 40804, 44100, 45796, 56644, 59049, 71824, 112896, 121104, 172225, 226576, 231361, 254016, 274576, 290521, 319225, 362404, 480249, 495616, 518400, 527076, 535824
Offset: 1
Keywords
Examples
A133459 begins {2, 7, 12, 19, 24, 36, 41, 46, 58, 76, 80, 81, 93, 115, 127, 132, 144, 150, 166, 197, 201, 202, 214, 236, 252, 271, 289, ...}. Thus a(1) = 36, a(2) = 81, a(3) = 144, a(4) = 289 that are the perfect squares in A133459.
Links
- Robert Israel, Table of n, a(n) for n = 1..985
Programs
-
Maple
N:= 200: # for terms up to N^2*(N+1)/2. PP:= [seq(i^2*(i+1)/2, i=1..N)]: PP2:= sort(convert(select(`<=`,{seq(seq(PP[i]+PP[j],j=i..N),i=1..N)},PP[-1]),list)): select(issqr,PP2); # Robert Israel, Feb 04 2020
-
Mathematica
Select[ Intersection[ Flatten[ Table[ i^2*(i+1)/2 + j^2*(j+1)/2, {i,1,300}, {j,1,i} ] ] ], IntegerQ[ Sqrt[ # ] ] & ]
Formula
a(n) = A136360(n)^2.
Comments