cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A060063 Triangle of coefficients of certain polynomials used for G.f.s of columns of triangle A060058.

Original entry on oeis.org

1, 1, 1, 5, 26, 9, 61, 775, 1179, 225, 1385, 32516, 114318, 87156, 11025, 50521, 1894429, 11982834, 20371266, 9652725, 893025, 2702765, 148008446, 1472351967, 4417978068, 4546174779, 1502513550
Offset: 0

Views

Author

Wolfdieter Lang, Mar 16 2001

Keywords

Comments

The row polynomials p(n,x) (rising powers of x) appear as numerators of the column g.f.s of triangle A060058.
First column (m=0) gives A000364 (Euler numbers). See A091742, A091743, A091744 for columns m=1..3.
The main diagonal gives A001818. The row sums give A052502. The alternating row sums give A091745.

Examples

			Triangle begins:
  {1};
  {1,1};
  {5,26,9};     <-- p(2,n)=5+26*x+9*x^2.
  {61,775,1179,225};
  ...
		

Formula

The row polynomials p(n, x) := Sum_{m=0..n} a(n, m)*x^m satisfy the differential equation: p(n, x) = x*((1-x)^2)*(d^2/dx^2)p(n-1, x) + (1+6*(n-1)*x+(5-6*n)*x^2)*(d/dx)p(n-1, x) + (3*n-2)*(1+(3*n-2)*x)*p(n-1, x), n >= 1, with input p(0, x)=1. - Wolfdieter Lang, Feb 13 2004

A060074 Triangle A060058 by diagonals.

Original entry on oeis.org

1, 1, 1, 5, 5, 1, 61, 61, 14, 1, 1385, 1385, 331, 30, 1, 50521, 50521, 12284, 1211, 55, 1, 2702765, 2702765, 663061, 68060, 3486, 91, 1, 199360981, 199360981, 49164554, 5162421, 281210, 8526, 140, 1
Offset: 0

Views

Author

Wolfdieter Lang, Mar 16 2001

Keywords

Comments

Row sums give A060059. Columns give A000364 (Euler numbers), A000364, A060075-78 for m=0,..,5.
Triangle can be used to express the Euler numbers E(n)=A000364(n), n >= 2, in terms of the numbers A060080 (scaled sums of squares), according to E(n+2)= sum(a(n,m)*A060080(m+2),m=0..n).

Examples

			{1}; {1,1}; {5,5,1}; {61,61,14,1}; ...
		

Formula

a(n, m)= a(n-1, m-1)+(m+1)^2*a(n, m+1), a(n, -1) := 0, a(0, 0)=1, a(n, m)=0 if n
a(n, m)=A060058(n, n-m).

A060061 Fourth column of triangle A060058.

Original entry on oeis.org

61, 1385, 12284, 68060, 281210, 948002, 2749340, 7097948, 16700255, 36419955, 74551048, 144631240, 267951892, 476948260, 819683560, 1365672424, 2213323585, 3499318141, 5410278500, 8197124100
Offset: 0

Author

Wolfdieter Lang, Mar 16 2001

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Binomial[n+6,6]*(280*n^3+2436*n^2+5906n+3843)/63,{n,0,19}] (* Indranil Ghosh, Feb 21 2017 *)
  • Python
    import math
    def C(n, r):
        f=math.factorial
        return f(n)//f(r)//f(n-r)
    def A060061(n):
        return (C(n+6, 6)*(280*n**3+2436*n**2+5906*n+3843))//63 # Indranil Ghosh, Feb 21 2017

Formula

a(n) = Sum_{j3=1..n+1} j3^2*Sum_{j2=1..j3+1} j2^2*Sum_{j1=1..j2+1} j1^2.
a(n) = A060058(n+3, 3) = binomial(n+6, 6)*(280*n^3+2436*n^2+5906*n+3843)/(7*9).
G.f.: (61+775*x+1179*x^2+225*x^3)/(1-x)^10 = p(3, x)/(1-x)^(3*3+1) with p(3, x)=sum(A060063(3, m)*x^m, m=0..3).

A060060 Third column of triangle A060058.

Original entry on oeis.org

5, 61, 331, 1211, 3486, 8526, 18522, 36762, 67947, 118547, 197197, 315133, 486668, 729708, 1066308, 1523268, 2132769, 2933049, 3969119, 5293519, 6967114, 9059930, 11652030, 14834430, 18710055, 23394735
Offset: 0

Author

Wolfdieter Lang, Mar 16 2001

Keywords

Examples

			a(3) = binomial(7,4) * (20 * 3^2 + 88*3 +75) / 15 = (35 * 519)/15 = 1211. - _Indranil Ghosh_, Feb 21 2017
		

Programs

  • Mathematica
    Table[(Binomial[n+4,4]*(20*n^2+88*n+75)/15),{n,0,25}] (* Indranil Ghosh, Feb 21 2017 *)
  • Python
    import math
    def C(n, r):
        f=math.factorial
        return f(n)//f(r)//f(n-r)
    def A060060(n):
        return C(n+4, 4)*(20*n**2+88*n+75)//15 # Indranil Ghosh, Feb 21 2017

Formula

a(n) = A060058(n+2, 2) = binomial(n+4, 4)*(20*n^2+88*n+75)/(3*5).
G.f.: (5+26*x+9*x^2)/(1-x)^7 = p(2, x)/(1-x)^(2*3+1). p(2, x)=sum(A060063(2, m)*x^m, m=0..2).

A060059 Row sums of triangle A060058.

Original entry on oeis.org

1, 2, 11, 137, 3132, 114593, 6140229, 453338814, 44121855371, 5474077896301, 843294200412824, 157932881837206305, 35337905804772937033, 9310387452563459134906, 2852935306612118864199659
Offset: 0

Author

Wolfdieter Lang, Mar 16 2001

Keywords

Formula

a(n)=sum(A060058(n, m), m=1..n).

A060062 Fifth column of triangle A060058.

Original entry on oeis.org

1385, 50521, 663061, 5162421, 28862471, 127838711, 475638163, 1544454483, 4494470838, 11949575638, 29449955678, 68035028126, 148639284066, 309297261826, 616573557226, 1183184394986, 2194487337735, 3947417571735, 6906579371835, 11783600663835, 19647572529585
Offset: 0

Author

Wolfdieter Lang, Mar 16 2001

Keywords

Comments

Fourfold iterated sums of squares; see A060061 for threefold case.

Programs

  • Mathematica
    CoefficientList[Series[(1385+32516*x+114318*x^2+87156*x^3+11025*x^4)/(1-x)^13 ,{x,0,20}],x] (* Indranil Ghosh, Feb 21 2017 *)

Formula

G.f. (1385+32516*x+114318*x^2+87156*x^3+11025*x^4)/(1-x)^13 = p(4, x)/(1-x)^(4*3+1) with p(2, x)=sum(A060063(4, m)*x^m, m=0..4).

A000364 Euler (or secant or "Zig") numbers: e.g.f. (even powers only) sec(x) = 1/cos(x).

Original entry on oeis.org

1, 1, 5, 61, 1385, 50521, 2702765, 199360981, 19391512145, 2404879675441, 370371188237525, 69348874393137901, 15514534163557086905, 4087072509293123892361, 1252259641403629865468285, 441543893249023104553682821, 177519391579539289436664789665
Offset: 0

Comments

Inverse Gudermannian gd^(-1)(x) = log(sec(x) + tan(x)) = log(tan(Pi/4 + x/2)) = arctanh(sin(x)) = 2 * arctanh(tan(x/2)) = 2 * arctanh(csc(x) - cot(x)). - Michael Somos, Mar 19 2011
a(n) is the number of downup permutations of [2n]. Example: a(2)=5 counts 4231, 4132, 3241, 3142, 2143. - David Callan, Nov 21 2011
a(n) is the number of increasing full binary trees on vertices {0,1,2,...,2n} for which the leftmost leaf is labeled 2n. - David Callan, Nov 21 2011
a(n) is the number of unordered increasing trees of size 2n+1 with only even degrees allowed and degree-weight generating function given by cosh(t). - Markus Kuba, Sep 13 2014
a(n) is the number of standard Young tableaux of skew shape (n+1,n,n-1,...,3,2)/(n-1,n-2,...2,1). - Ran Pan, Apr 10 2015
Since cos(z) has a root at z = Pi/2 and no other root in C with a smaller |z|, the radius of convergence of the e.g.f. (intended complex-valued) is Pi/2 = A019669 (see also A028296). - Stanislav Sykora, Oct 07 2016
All terms are odd. - Alois P. Heinz, Jul 22 2018
The sequence starting with a(1) is periodic modulo any odd prime p. The minimal period is (p-1)/2 if p == 1 mod 4 and p-1 if p == 3 mod 4 [Knuth & Buckholtz, 1967, Theorem 2]. - Allen Stenger, Aug 03 2020
Conjecture: taking the sequence [a(n) : n >= 1] modulo an integer k gives a purely periodic sequence with period dividing phi(k). For example, the sequence taken modulo 21 begins [1, 5, 19, 20, 16, 2, 1, 5, 19, 20, 16, 2, 1, 5, 19, 20, 16, 2, 1, 5, 19, ...] with an apparent period of 6 = phi(21)/2. - Peter Bala, May 08 2023

Examples

			G.f. = 1 + x + 5*x^2 + 61*x^3 + 1385*x^4 + 50521*x^5 + 2702765*x^6 + 199360981*x^7 + ...
sec(x) = 1 + 1/2*x^2 + 5/24*x^4 + 61/720*x^6 + ...
From _Gary W. Adamson_, Jul 18 2011: (Start)
The first few rows of matrix M are:
   1,  1,  0,  0,  0, ...
   4,  4,  4,  0,  0, ...
   9,  9,  9,  9,  0, ...
  16, 16, 16, 16, 16, ... (End)
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 810; gives a version with signs: E_{2n} = (-1)^n*a(n) (this is A028296).
  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 932.
  • J. M. Borwein and D. M. Bailey, Mathematics by Experiment, Peters, Boston, 2004; p. 49
  • J. M. Borwein, D. H. Bailey, and R. Girgensohn, Experimentation in Mathematics, A K Peters, Ltd., Natick, MA, 2004. x+357 pp. See p. 141.
  • Florian Cajori, A History of Mathematical Notations, Dover edition (2012), par. 420.
  • G. Chrystal, Algebra, Vol. II, p. 342.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 49.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 110.
  • H. Doerrie, 100 Great Problems of Elementary Mathematics, Dover, NY, 1965, p. 69.
  • L. Euler, Inst. Calc. Diff., Section 224.
  • S. Mukai, An Introduction to Invariants and Moduli, Cambridge, 2003; see p. 444.
  • L. Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapters 5 and 33, pages 41, 314.
  • J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 269.

Crossrefs

Essentially same as A028296 and A122045.
First column of triangle A060074.
Two main diagonals of triangle A060058 (as iterated sums of squares).
Absolute values of row sums of A160485. - Johannes W. Meijer, Jul 06 2009
Left edge of triangle A210108, see also A125053, A076552. Cf. A255881.
Bisection (even part) of A317139.
The sequences [(-k^2)^n*Euler(2*n, 1/k), n = 0, 1, ...] are: A000007 (k=1), A000364 (k=2), |A210657| (k=3), A000281 (k=4), A272158 (k=5), A002438 (k=6), A273031 (k=7).

Programs

  • Maple
    series(sec(x),x,40): SERIESTOSERIESMULT(%): subs(x=sqrt(y),%): seriestolist(%);
    # end of program
    A000364_list := proc(n) local S,k,j; S[0] := 1;
    for k from 1 to n do S[k] := k*S[k-1] od;
    for k from  1 to n do
        for j from k to n do
            S[j] := (j-k)*S[j-1]+(j-k+1)*S[j] od od;
    seq(S[j], j=1..n)  end:
    A000364_list(16);  # Peter Luschny, Apr 02 2012
    A000364 := proc(n)
        abs(euler(2*n)) ;
    end proc: # R. J. Mathar, Mar 14 2013
  • Mathematica
    Take[ Range[0, 32]! * CoefficientList[ Series[ Sec[x], {x, 0, 32}], x], {1, 32, 2}] (* Robert G. Wilson v, Apr 23 2006 *)
    Table[Abs[EulerE[2n]], {n, 0, 30}] (* Ray Chandler, Mar 20 2007 *)
    a[ n_] := If[ n < 0, 0, With[{m = 2 n}, m! SeriesCoefficient[ Sec[ x], {x, 0, m}]]]; (* Michael Somos, Nov 22 2013 *)
    a[ n_] := If[ n < 0, 0, With[{m = 2 n + 1}, m! SeriesCoefficient[ InverseGudermannian[ x], {x, 0, m}]]]; (* Michael Somos, Nov 22 2013 *)
    a[n_] := Sum[Sum[Binomial[k, m] (-1)^(n+k)/(2^(m-1)) Sum[Binomial[m, j]* (2j-m)^(2n), {j, 0, m/2}] (-1)^(k-m), {m, 0, k}], {k, 1, 2n}]; Table[ a[n], {n, 0, 16}] (* Jean-François Alcover, Jun 26 2019, after Vladimir Kruchinin *)
    a[0] := 1; a[n_] := a[n] = -Sum[a[n - k]/(2 k)!, {k, 1, n}]; Map[(-1)^# (2 #)! a[#] &, Range[0, 16]] (* Oliver Seipel, May 18 2024 *)
  • Maxima
    a(n):=sum(sum(binomial(k,m)*(-1)^(n+k)/(2^(m-1))*sum(binomial(m,j)*(2*j-m)^(2*n),j,0,m/2)*(-1)^(k-m),m,0,k),k,1,2*n); /* Vladimir Kruchinin, Aug 05 2010 */
    
  • Maxima
    a[n]:=if n=0 then 1 else sum(sum((i-k)^(2*n)*binomial(2*k, i)*(-1)^(i+k+n), i, 0, k-1)/ (2^(k-1)), k, 1, 2*n); makelist(a[n], n, 0, 16); /* Vladimir Kruchinin, Oct 05 2012 */
    
  • PARI
    {a(n)=local(CF=1+x*O(x^n));if(n<0,return(0), for(k=1,n,CF=1/(1-(n-k+1)^2*x*CF));return(Vec(CF)[n+1]))} \\ Paul D. Hanna Oct 07 2005
    
  • PARI
    {a(n) = if( n<0, 0, (2*n)! * polcoeff( 1 / cos(x + O(x^(2*n + 1))), 2*n))}; /* Michael Somos, Jun 18 2002 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, n = 2*n+1 ; A = x * O(x^n); n! * polcoeff( log(1 / cos(x + A) + tan(x + A)), n))}; /* Michael Somos, Aug 15 2007 */
    
  • PARI
    {a(n)=polcoeff(sum(m=0, n, (2*m)!/2^m * x^m/prod(k=1, m, 1+k^2*x+x*O(x^n))), n)} \\ Paul D. Hanna, Sep 20 2012
    
  • PARI
    list(n)=my(v=Vec(1/cos(x+O(x^(2*n+1)))));vector(n,i,v[2*i-1]*(2*i-2)!) \\ Charles R Greathouse IV, Oct 16 2012
    
  • PARI
    a(n)=subst(bernpol(2*n+1),'x,1/4)*4^(2*n+1)*(-1)^(n+1)/(2*n+1) \\ Charles R Greathouse IV, Dec 10 2014
    
  • PARI
    a(n)=abs(eulerfrac(2*n)) \\ Charles R Greathouse IV, Mar 23 2022
    
  • PARI
    \\ Based on an algorithm of Peter Bala, cf. link in A110501.
    upto(n) = my(v1, v2, v3); v1 = vector(n+1, i, 0); v1[1] = 1; v2 = vector(n, i, i^2); v3 = v1; for(i=2, n+1, for(j=2, i-1, v1[j] += v2[i-j+1]*v1[j-1]); v1[i] = v1[i-1]; v3[i] = v1[i]); v3 \\ Mikhail Kurkov, Aug 30 2025
    
  • Python
    from functools import lru_cache
    from math import comb
    @lru_cache(maxsize=None)
    def A000364(n): return 1 if n == 0 else (1 if n % 2 else -1)*sum((-1 if i % 2 else 1)*A000364(i)*comb(2*n,2*i) for i in range(n)) # Chai Wah Wu, Jan 14 2022
    
  • Python
    # after Mikhail Kurkov, based on an algorithm of Peter Bala, cf. link in A110501.
    def euler_list(len: int) -> list[int]:
        if len == 0: return []
        v1 = [1] + [0] * (len - 1)
        v2 = [i**2 for i in range(1, len + 1)]
        result = [0] * len
        result[0] = 1
        for i in range(1, len):
            for j in range(1, i):
                v1[j] += v2[i - j] * v1[j - 1]
            v1[i] = v1[i - 1]
            result[i] = v1[i]
        return result
    print(euler_list(1000))  # Peter Luschny, Aug 30 2025
  • Sage
    # Algorithm of L. Seidel (1877)
    # n -> [a(0), a(1), ..., a(n-1)] for n > 0.
    def A000364_list(len) :
        R = []; A = {-1:0, 0:1}; k = 0; e = 1
        for i in (0..2*len-1) :
            Am = 0; A[k + e] = 0; e = -e
            for j in (0..i) : Am += A[k]; A[k] = Am; k += e
            if e < 0 : R.append(A[-i//2])
        return R
    A000364_list(17) # Peter Luschny, Mar 31 2012
    

Formula

E.g.f.: Sum_{n >= 0} a(n) * x^(2*n) / (2*n)! = sec(x). - Michael Somos, Aug 15 2007
E.g.f.: Sum_{n >= 0} a(n) * x^(2*n+1) / (2*n+1)! = gd^(-1)(x). - Michael Somos, Aug 15 2007
E.g.f.: Sum_{n >= 0} a(n)*x^(2*n+1)/(2*n+1)! = 2*arctanh(cosec(x)-cotan(x)). - Ralf Stephan, Dec 16 2004
Pi/4 - [Sum_{k=0..n-1} (-1)^k/(2*k+1)] ~ (1/2)*[Sum_{k>=0} (-1)^k*E(k)/(2*n)^(2k+1)] for positive even n. [Borwein, Borwein, and Dilcher]
Also, for positive odd n, log(2) - Sum_{k = 1..(n-1)/2} (-1)^(k-1)/k ~ (-1)^((n-1)/2) * Sum_{k >= 0} (-1)^k*E(k)/n^(2*k+1), where E(k) is the k-th Euler number, by Borwein, Borwein, and Dilcher, Lemma 2 with f(x) := 1/(x + 1/2), h := 1/2 and then replace x with (n-1)/2. - Peter Bala, Oct 29 2016
Let M_n be the n X n matrix M_n(i, j) = binomial(2*i, 2*(j-1)) = A086645(i, j-1); then for n>0, a(n) = det(M_n); example: det([1, 1, 0, 0; 1, 6, 1, 0; 1, 15, 15, 1; 1, 28, 70, 28 ]) = 1385. - Philippe Deléham, Sep 04 2005
This sequence is also (-1)^n*EulerE(2*n) or abs(EulerE(2*n)). - Paul Abbott (paul(AT)physics.uwa.edu.au), Apr 14 2006
a(n) = 2^n * E_n(1/2), where E_n(x) is an Euler polynomial.
a(k) = a(j) (mod 2^n) if and only if k == j (mod 2^n) (k and j are even). [Stern; see also Wagstaff and Sun]
E_k(3^(k+1)+1)/4 = (3^k/2)*Sum_{j=0..2^n-1} (-1)^(j-1)*(2j+1)^k*[(3j+1)/2^n] (mod 2^n) where k is even and [x] is the greatest integer function. [Sun]
a(n) ~ 2^(2*n+2)*(2*n)!/Pi^(2*n+1) as n -> infinity. [corrected by Vaclav Kotesovec, Jul 10 2021]
a(n) = Sum_{k=0..n} A094665(n, k)*2^(n-k). - Philippe Deléham, Jun 10 2004
Recurrence: a(n) = -(-1)^n*Sum_{i=0..n-1} (-1)^i*a(i)*binomial(2*n, 2*i). - Ralf Stephan, Feb 24 2005
O.g.f.: 1/(1-x/(1-4*x/(1-9*x/(1-16*x/(...-n^2*x/(1-...)))))) (continued fraction due to T. J. Stieltjes). - Paul D. Hanna, Oct 07 2005
a(n) = (Integral_{t=0..Pi} log(tan(t/2)^2)^(2n)dt)/Pi^(2n+1). - Logan Kleinwaks (kleinwaks(AT)alumni.princeton.edu), Mar 15 2007
From Peter Bala, Mar 24 2009: (Start)
Basic hypergeometric generating function: 2*exp(-t)*Sum {n >= 0} Product_{k = 1..n} (1-exp(-(4*k-2)*t))*exp(-2*n*t)/Product_{k = 1..n+1} (1+exp(-(4*k-2)*t)) = 1 + t + 5*t^2/2! + 61*t^3/3! + .... For other sequences with generating functions of a similar type see A000464, A002105, A002439, A079144 and A158690.
a(n) = 2*(-1)^n*L(-2*n), where L(s) is the Dirichlet L-function L(s) = 1 - 1/3^s + 1/5^s - + .... (End)
Sum_{n>=0} a(n)*z^(2*n)/(4*n)!! = Beta(1/2-z/(2*Pi),1/2+z/(2*Pi))/Beta(1/2,1/2) with Beta(z,w) the Beta function. - Johannes W. Meijer, Jul 06 2009
a(n) = Sum_(Sum_(binomial(k,m)*(-1)^(n+k)/(2^(m-1))*Sum_(binomial(m,j)*(2*j-m)^(2*n),j,0,m/2)*(-1)^(k-m),m,0,k),k,1,2*n), n>0. - Vladimir Kruchinin, Aug 05 2010
If n is prime, then a(n)==1 (mod 2*n). - Vladimir Shevelev, Sep 04 2010
From Peter Bala, Jan 21 2011: (Start)
(1)... a(n) = (-1/4)^n*B(2*n,-1),
where {B(n,x)}n>=1 = [1, 1+x, 1+6*x+x^2, 1+23*x+23*x^2+x^3, ...] is the sequence of Eulerian polynomials of type B - see A060187. Equivalently,
(2)... a(n) = Sum_{k = 0..2*n} Sum_{j = 0..k} (-1)^(n-j) *binomial(2*n+1,k-j)*(j+1/2)^(2*n).
We also have
(3)... a(n) = 2*A(2*n,i)/(1+i)^(2*n+1),
where i = sqrt(-1) and where {A(n,x)}n>=1 = [x, x + x^2, x + 4*x^2 + x^3, ...] denotes the sequence of Eulerian polynomials - see A008292. Equivalently,
(4)... a(n) = i*Sum_{k = 1..2*n} (-1)^(n+k)*k!*Stirling2(2*n,k) *((1+i)/2)^(k-1)
= i*Sum_{k = 1..2*n} (-1)^(n+k)*((1+i)/2)^(k-1) Sum_{j = 0..k} (-1)^(k-j)*binomial(k,j)*j^(2*n).
Either this explicit formula for a(n) or (2) above may be used to obtain congruence results for a(n). For example, for prime p
(5a)... a(p) = 1 (mod p)
(5b)... a(2*p) = 5 (mod p)
and for odd prime p
(6a)... a((p+1)/2) = (-1)^((p-1)/2) (mod p)
(6b)... a((p-1)/2) = -1 + (-1)^((p-1)/2) (mod p).
(End)
a(n) = (-1)^n*2^(4*n+1)*(zeta(-2*n,1/4) - zeta(-2*n,3/4)). - Gerry Martens, May 27 2011
a(n) may be expressed as a sum of multinomials taken over all compositions of 2*n into even parts (Vella 2008): a(n) = Sum_{compositions 2*i_1 + ... + 2*i_k = 2*n} (-1)^(n+k)* multinomial(2*n, 2*i_1, ..., 2*i_k). For example, there are 4 compositions of the number 6 into even parts, namely 6, 4+2, 2+4 and 2+2+2, and hence a(3) = 6!/6! - 6!/(4!*2!) - 6!/(2!*4!) + 6!/(2!*2!*2!) = 61. A companion formula expressing a(n) as a sum of multinomials taken over the compositions of 2*n-1 into odd parts has been given by Malenfant 2011. - Peter Bala, Jul 07 2011
a(n) = the upper left term in M^n, where M is an infinite square production matrix; M[i,j] = A000290(i) = i^2, i >= 1 and 1 <= j <= i+1, and M[i,j] = 0, i >= 1 and j >= i+2 (see examples). - Gary W. Adamson, Jul 18 2011
E.g.f. A'(x) satisfies the differential equation A'(x)=cos(A(x)). - Vladimir Kruchinin, Nov 03 2011
From Peter Bala, Nov 28 2011: (Start)
a(n) = D^(2*n)(cosh(x)) evaluated at x = 0, where D is the operator cosh(x)*d/dx. a(n) = D^(2*n-1)(f(x)) evaluated at x = 0, where f(x) = 1+x+x^2/2! and D is the operator f(x)*d/dx.
Other generating functions: cosh(Integral_{t = 0..x} 1/cos(t)) dt = 1 + x^2/2! + 5*x^4/4! + 61*x^6/6! + 1385*x^8/8! + .... Cf. A012131.
A(x) := arcsinh(tan(x)) = log( sec(x) + tan(x) ) = x + x^3/3! + 5*x^5/5! + 61*x^7/7! + 1385*x^9/9! + .... A(x) satisfies A'(x) = cosh(A(x)).
B(x) := Series reversion( log(sec(x) + tan(x)) ) = x - x^3/3! + 5*x^5/5! - 61*x^7/7! + 1385*x^9/9! - ... = arctan(sinh(x)). B(x) satisfies B'(x) = cos(B(x)). (End)
HANKEL transform is A097476. PSUM transform is A173226. - Michael Somos, May 12 2012
a(n+1) - a(n) = A006212(2*n). - Michael Somos, May 12 2012
a(0) = 1 and, for n > 0, a(n) = (-1)^n*((4*n+1)/(2*n+1) - Sum_{k = 1..n} (4^(2*k)/2*k)*binomial(2*n,2*k-1)*A000367(k)/A002445(k)); see the Bucur et al. link. - L. Edson Jeffery, Sep 17 2012
O.g.f.: Sum_{n>=0} (2*n)!/2^n * x^n / Product_{k=1..n} (1 + k^2*x). - Paul D. Hanna, Sep 20 2012
From Sergei N. Gladkovskii, Oct 31 2011 to Oct 11 2013: (Start)
Continued fractions:
E.g.f.: (sec(x)) = 1+x^2/T(0), T(k) = 2(k+1)(2k+1) - x^2 + x^2*(2k+1)(2k+2)/T(k+1).
E.g.f.: 2/Q(0) where Q(k) = 1 + 1/(1 - x^2/(x^2 - 2*(k+1)*(2*k+1)/Q(k+1))).
G.f.: 1/Q(0) where Q(k) = 1 + x*k*(3*k-1) - x*(k+1)*(2*k+1)*(x*k^2+1)/Q(k+1).
E.g.f.: (2 + x^2 + 2*U(0))/(2 + (2 - x^2)*U(0)) where U(k)= 4*k + 4 + 1/( 1 + x^2/(2 - x^2 + (2*k+3)*(2*k+4)/U(k+1))).
E.g.f.: 1/cos(x) = 8*(x^2+1)/(4*x^2 + 8 - x^4*U(0)) where U(k) = 1 + 4*(k+1)*(k+2)/(2*k+3 - x^2*(2*k+3)/(x^2 - 8*(k+1)*(k+2)*(k+3)/U(k+1))).
G.f.: 1/U(0) where U(k) = 1 + x - x*(2*k+1)*(2*k+2)/(1 - x*(2*k+1)*(2*k+2)/U(k+1)).
G.f.: 1 + x/G(0) where G(k) = 1 + x - x*(2*k+2)*(2*k+3)/(1 - x*(2*k+2)*(2*k+3)/G(k+1)).
Let F(x) = sec(x^(1/2)) = Sum_{n>=0} a(n)*x^n/(2*n)!, then F(x)=2/(Q(0) + 1) where Q(k)= 1 - x/(2*k+1)/(2*k+2)/(1 - 1/(1 + 1/Q(k+1))).
G.f.: Q(0), where Q(k) = 1 - x*(k+1)^2/( x*(k+1)^2 - 1/Q(k+1)).
E.g.f.: 1/cos(x) = 1 + x^2/(2-x^2)*Q(0), where Q(k) = 1 - 2*x^2*(k+1)*(2*k+1)/( 2*x^2*(k+1)*(2*k+1)+ (12-x^2 + 14*k + 4*k^2)*(2-x^2 + 6*k + 4*k^2)/Q(k+1)). (End)
a(n) = Sum_{k=1..2*n} (Sum_{i=0..k-1} (i-k)^(2*n)*binomial(2*k,i)*(-1)^(i+k+n)) / 2^(k-1) for n>0, a(0)=1. - Vladimir Kruchinin, Oct 05 2012
It appears that a(n) = 3*A076552(n -1) + 2*(-1)^n for n >= 1. Conjectural congruences: a(2*n) == 5 (mod 60) for n >= 1 and a(2*n+1) == 1 (mod 60) for n >= 0. - Peter Bala, Jul 26 2013
From Peter Bala, Mar 09 2015: (Start)
O.g.f.: Sum_{n >= 0} 1/2^n * Sum_{k = 0..n} (-1)^k*binomial(n,k)/(1 - sqrt(-x)*(2*k + 1)) = Sum_{n >= 0} 1/2^n * Sum_{k = 0..n} (-1)^k*binomial(n,k)/(1 + x*(2*k + 1)^2).
O.g.f. is 1 + x*d/dx(log(F(x))), where F(x) = 1 + x + 3*x^2 + 23*x^3 + 371*x^4 + ... is the o.g.f. for A255881. (End)
Sum_(n >= 1, A034947(n)/n^(2d+1)) = a(d)*Pi^(2d+1)/(2^(2d+2)-2)(2d)! for d >= 0; see Allouche and Sondow, 2015. - Jonathan Sondow, Mar 21 2015
Asymptotic expansion: 4*(4*n/(Pi*e))^(2*n+1/2)*exp(1/2+1/(24*n)-1/(2880*n^3) +1/(40320*n^5)-...). (See the Luschny link.) - Peter Luschny, Jul 14 2015
a(n) = 2*(-1)^n*Im(Li_{-2n}(i)), where Li_n(x) is polylogarithm, i=sqrt(-1). - Vladimir Reshetnikov, Oct 22 2015
Limit_{n->infinity} ((2*n)!/a(n))^(1/(2*n)) = Pi/2. - Stanislav Sykora, Oct 07 2016
O.g.f.: 1/(1 + x - 2*x/(1 - 2*x/(1 + x - 12*x/(1 - 12*x/(1 + x - 30*x/(1 - 30*x/(1 + x - ... - (2*n - 1)*(2*n)*x/(1 - (2*n - 1)*(2*n)*x/(1 + x - ... ))))))))). - Peter Bala, Nov 09 2017
For n>0, a(n) = (-PolyGamma(2*n, 1/4) / 2^(2*n - 1) - (2^(2*n + 2) - 2) * Gamma(2*n + 1) * zeta(2*n + 1)) / Pi^(2*n + 1). - Vaclav Kotesovec, May 04 2020
a(n) ~ 2^(4*n + 3) * n^(2*n + 1/2) / (Pi^(2*n + 1/2) * exp(2*n)) * exp(Sum_{k>=1} bernoulli(k+1) / (k*(k+1)*2^k*n^k)). - Vaclav Kotesovec, Mar 05 2021
Peter Bala's conjectured congruences, a(2n) == 5 (mod 60) for n >= 1 and a(2n + 1) == 1 (mod 60), hold due to the results of Stern (mod 4) and Knuth & Buckholtz (mod 3 and 5). - Charles R Greathouse IV, Mar 23 2022

Extensions

Typo in name corrected by Anders Claesson, Dec 01 2015

A060081 Exponential Riordan array (sech(x), tanh(x)).

Original entry on oeis.org

1, 0, 1, -1, 0, 1, 0, -5, 0, 1, 5, 0, -14, 0, 1, 0, 61, 0, -30, 0, 1, -61, 0, 331, 0, -55, 0, 1, 0, -1385, 0, 1211, 0, -91, 0, 1, 1385, 0, -12284, 0, 3486, 0, -140, 0, 1, 0, 50521, 0, -68060, 0, 8526, 0, -204, 0, 1, -50521, 0, 663061
Offset: 0

Author

Wolfdieter Lang, Mar 29 2001

Keywords

Comments

Previous name was: "Triangle of coefficients (lower triangular matrix) of certain (binomial) convolution polynomials related to 1/cosh(x) and tanh(x). Use trigonometric functions for the unsigned version".
Row sums give A009265(n) (signed); A009244(n) (unsigned). Column sequences without interspersed zeros and unsigned: A000364 (Euler), A000364, A060075-8 for m=0,...,5.
a(n,m) = ((-1)^((n-m)/2))*ay(m+1,(n-m)/2) if n-m is even, else 0; where the rectangular array ay(n,m) is defined in A060058 Formula.
The row polynomials p(n,x) appear in a problem of thermo field dynamics (Bogoliubov transformation for the harmonic Bose oscillator). See the link to a .ps.gz file where they are called R_{n}(x).
The inverse of this Sheffer matrix with elements a(n,m) is the Sheffer matrix A060524. This Sheffer triangle appears in the Moyal star product of the harmonic Bose oscillator: x^{*n} = Sum_{m=0..n} a(n,m) x^m with x = 2 (bar a) a/hbar. See the Th. Spernat link, pp. 28, 29, where the unsigned version is used for y=-ix. - Wolfdieter Lang, Jul 22 2005
In the umbral calculus (see Roman reference under A048854) the p(n,x) are called Sheffer for (g(t)=1/cosh(arctanh(t)) = 1/sqrt(1-t^2), f(t)=arctanh(t)).
p(n,x) := Sum_{m=0..n} a(n,m)*x^m, n >= 0, are monic polynomials satisfying p(n,x+y) = Sum_{k=0..n} binomial(n,k)*p(k,x)*q(n-k,y) (binomial, also called exponential, convolution polynomials) with the row polynomials of the associated triangle q(n,x) := Sum_{m=0..n} A111593(n,m)*x^m. E.g.f. for p(n,x) is exp(x*tanh(z))*cosh(z)(signed). [Corrected by Wolfdieter Lang, Sep 12 2005]
Exponential Riordan array [sech(x), tanh(x)]. Unsigned triangle is [sec(x), tan(x)]. - Paul Barry, Jan 10 2011

Examples

			p(3,x) = -5*x + x^3.
Exponential convolution together with A111593 for row polynomials q(n,x), case n=2: -1+(x+y)^2 = p(2,x+y) = 1*p(0,x)*q(2,y) + 2*p(1,x)*q(1,y) + 1*p(2,x)*q(0,y) = 1*1*y^2 + 2*x*y + 1*(-1+x^2)*1.
Triangle begins:
  1,
  0, 1,
  -1, 0, 1,
  0, -5, 0, 1,
  5, 0, -14, 0, 1,
  0, 61, 0, -30, 0, 1,
  -61, 0, 331, 0, -55, 0, 1,
  0, -1385, 0, 1211, 0, -91, 0, 1,
  1385, 0, -12284, 0, 3486, 0, -140, 0, 1,
  0, 50521, 0, -68060, 0, 8526, 0, -204, 0, 1,
  -50521, 0, 663061, 0, -281210, 0, 18522, 0, -285, 0, 1,
  ...
As a right-aligned triangle:
                                                       1;
                                                    0, 1;
                                                -1, 0, 1;
                                           0,   -5, 0, 1;
                                        5, 0,  -14, 0, 1;
                                 0,    61, 0,  -30, 0, 1;
                            -61, 0,   331, 0,  -55, 0, 1;
                     0,   -1385, 0,  1211, 0,  -91, 0, 1;
               1385, 0,  -12284, 0,  3486, 0, -140, 0, 1;
          0,  50521, 0,  -68060, 0,  8526, 0, -204, 0, 1;
  -50521, 0, 663061, 0, -281210, 0, 18522, 0, -285, 0, 1;
  ...
Production matrix begins
   0,   1;
  -1,   0,   1;
   0,  -4,   0,   1;
   0,   0,  -9,   0,   1;
   0,   0,   0, -16,   0,   1;
   0,   0,   0,   0, -25,   0,   1;
   0,   0,   0,   0,   0, -36,   0,   1;
   0,   0,   0,   0,   0,   0, -49,   0,   1;
   0,   0,   0,   0,   0,   0,   0, -64,   0,   1;
- _Paul Barry_, Jan 10 2011
		

References

  • W. Lang, Two normal ordering problems and certain Sheffer polynomials, in Difference Equations, Special Functions and Orthogonal Polynomials, edts. S. Elaydi et al., World Scientific, 2007, pages 354-368. [From Wolfdieter Lang, Feb 06 2009]

Programs

  • Maple
    riordan := (d,h,n,k) -> coeftayl(d*h^k,x=0,n)*n!/k!:
    A060081 := (n,k) -> riordan(sech(x),tanh(x),n,k):
    seq(print(seq(A060081(n,k),k=0..n)),n=0..5); # Peter Luschny, Apr 15 2015
  • Mathematica
    max = 12; t = Transpose[ Table[ PadRight[ CoefficientList[ Series[ Tanh[x]^m/m!/Cosh[x], {x, 0, max}], x], max + 1, 0]*Table[k!, {k, 0, max}], {m, 0, max}]]; Flatten[ Table[t[[n, k]], {n, 1, max}, {k, 1, n}]] (* Jean-François Alcover, Sep 29 2011 *)
  • Sage
    def A060081_triangle(dim): # computes unsigned T(n, k).
        M = matrix(ZZ,dim,dim)
        for n in (0..dim-1): M[n,n] = 1
        for n in (1..dim-1):
            for k in (0..n-1):
                M[n,k] = M[n-1,k-1]+(k+1)^2*M[n-1,k+1]
        return M
    A060081_triangle(9) # Peter Luschny, Sep 19 2012

Formula

E.g.f. for column m: (((tanh(x))^m)/m!)/cosh(x), m >= 0. Use trigonometric functions for unsigned case.
a(n, m) = a(n-1, m-1)-((m+1)^2)*a(n-1, m+1); a(0, 0)=1; a(n, -1) := 0, a(n, m)=0 if n < m. Use sum of the two recursion terms for unsigned case.
a(n, k) = (1/(k+1)!)*Sum_{q=0..n} C(n,q)*((-1)^(n-q)+1)*((-1)^(q-k)+1)*Sum_{j=0..q-k} C(j+k,k)*(j+k+1)!*2^(q-j-k-2)*(-1)^j*Stirling2(q+1,j+k+1). - Vladimir Kruchinin, Feb 12 2019

Extensions

New name (using a comment from Paul Barry) from Peter Luschny, Apr 15 2015

A060075 Third column of triangle A060074.

Original entry on oeis.org

1, 14, 331, 12284, 663061, 49164554, 4798037791, 596372040824, 91991577140521, 17244625801225094, 3861296322290987251, 1017889493782391701364, 312043142223584185393981, 110072908401904868672053634, 44269461921572566583027776711, 20136444961077089693182895665904
Offset: 0

Author

Wolfdieter Lang, Mar 16 2001

Keywords

Comments

Also third diagonal of triangle A060058.
a(n) is n-fold iterated sum of squares with last upper summation index 3 and other upper summation indices j[k]+1, k=2,...,n. See Comments A060061 for the threefold iteration with last upper summation index n.

Crossrefs

Programs

  • Mathematica
    a[n_] := (Abs[EulerE[2*n+2]] - Abs[EulerE[2*n]]) / 4; Array[a, 16] (* Amiram Eldar, May 03 2025 *)
  • PARI
    a(n) = (abs(eulerfrac(2*n+2)) - abs(eulerfrac(2*n))) / 4; \\ Amiram Eldar, May 03 2025

Formula

a(n) = A060074(n+2, 2) = A060058(2+n, n).
a(n) = (1/4)*(A000364(n+1) - A000364(n)). - Benoit Cloitre, Apr 06 2003
G.f.: sin(x)^2/cos(x)^3 = x^2/2! + 14*x^4/4! + 331*x^6/6! + ... - Peter Bala, Oct 22 2019

A365673 Array A(n, k) read by ascending antidiagonals. Polygonal number weighted generalized Catalan sequences.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 4, 1, 1, 1, 4, 15, 8, 1, 1, 1, 5, 34, 105, 16, 1, 1, 1, 6, 61, 496, 945, 32, 1, 1, 1, 7, 96, 1385, 11056, 10395, 64, 1, 1, 1, 8, 139, 2976, 50521, 349504, 135135, 128, 1, 1, 1, 9, 190, 5473, 151416, 2702765, 14873104, 2027025, 256, 1
Offset: 0

Author

Peter Luschny, Sep 30 2023

Keywords

Comments

Using polygonal numbers as weights, a recursion for triangles is defined, whose main diagonals represents a family of sequences, which include, among others, the powers of 2, the double factorial of odd numbers, the reduced tangent numbers, and the Euler numbers.
Apart from the edge cases k = 0 and k = n the recursion is T(n, k) = w(n, k) * T(n, k - 1) + T(n - 1, k). T(n, 0) = 1 and T(n, n) = T(n, n-1) if n > 0.
The weights w(n, k) identical to 1 yield the recursion of the Catalan triangle A009766 (with main diagonal the Catalan numbers). Here the polygonal numbers are used as weights in the form w(n, k) = p(s, n - k + 1), where the parameter s is the number of sides of the polygon and p(s, n) = ((s-2) * n^2 - (s-4) * n) / 2, see A317302.

Examples

			Array A(n, k) starts:                            (polygon|diagonal|triangle)
[0] 1, 1, 1,   1,     1,       1,         1, ...  A258837  A000012
[1] 1, 1, 2,   4,     8,      16,        32, ...  A080956  A011782
[2] 1, 1, 3,  15,   105,     945,     10395, ...  A001477  A001147  A001498
[3] 1, 1, 4,  34,   496,   11056,    349504, ...  A000217  A002105  A365674
[4] 1, 1, 5,  61,  1385,   50521,   2702765, ...  A000290  A000364  A060058
[5] 1, 1, 6,  96,  2976,  151416,  11449296, ...  A000326  A126151  A366138
[6] 1, 1, 7, 139,  5473,  357721,  34988647, ...  A000384  A126156  A365672
[7] 1, 1, 8, 190,  9080,  725320,  87067520, ...  A000566  A366150  A366149
[8] 1, 1, 9, 249, 14001, 1322001, 188106489, ...  A000567
           A054556                         A366137
		

Crossrefs

Cf. A009766, A366137 (central diagonal), A317302 (table of polygonal numbers).

Programs

  • Maple
    poly := (s, n) -> ((s - 2) * n^2 - (s - 4) * n) / 2:
    T := proc(s, n, k) option remember; if k = 0 then 1 else if k = n then T(s, n, k-1) else poly(s, n - k + 1) * T(s, n, k - 1) + T(s, n - 1, k) fi fi end:
    for n from 0 to 8 do A := (n, k) -> T(n, k, k): seq(A(n, k), k = 0..9) od;
    # Alternative, using continued fractions:
    A := proc(p, L) local CF, poly, k, m, P, ser;
       poly := (s, n) -> ((s - 2)*n^2 - (s - 4)*n)/2;
       CF := 1 + x;
       for k from 1 to L do
           m := L - k + 1;
           P := poly(p, m);
           CF := 1/(1 - P*x*CF)
       od;
       ser := series(CF, x, L);
       seq(coeff(ser, x, m), m = 0..L-1)
    end:
    for p from 0 to 8 do lprint(A(p, 8)) od;
  • Mathematica
    poly[s_, n_] := ((s - 2) * n^2 - (s - 4) * n) / 2;
    T[s_, n_, k_] := T[s, n, k] = If[k == 0, 1, If[k == n, T[s, n, k - 1], poly[s, n - k + 1] * T[s, n, k - 1] + T[s, n - 1, k]]];
    A[n_, k_] := T[n, k, k];
    Table[A[n - k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 27 2023, from first Maple program *)
  • PARI
    A(p, n) = {
           my(CF = 1 + x,
               poly(s, n) = ((s - 2)*n^2 - (s - 4)*n)/2,
               m, P
           );
           for(k = 1, n,
               m = n - k + 1;
               P = poly(p, m);
               CF = 1/(1 - P*x*CF)
            );
            Vec(CF + O(x^(n)))
    }
    for(p = 0, 8, print(A(p, 8)))
    \\  Michel Marcus and Peter Luschny, Oct 02 2023
  • Python
    from functools import cache
    @cache
    def T(s, n, k):
        if k == 0: return 1
        if k == n: return T(s, n, k - 1)
        p = (n - k + 1) * ((s - 2) * (n - k + 1) - (s - 4)) // 2
        return p * T(s, n, k - 1) + T(s, n - 1, k)
    def A(n, k): return T(n, k, k)
    for n in range(9): print([A(n, k) for k in range(9)])
    
Showing 1-10 of 15 results. Next