Original entry on oeis.org
1, 1, 3, 34, 1385, 151416, 34988647, 14652451360, 10043767063521, 10488938037348736, 15823297170233169371, 33093543421485325857024, 92866643063435821361785225, 340452463858281665211769947136, 1594758692956372710911812262365695, 9367635873493885183992990317902544896
Offset: 0
A366149
Triangle read by rows. T(n, k) = A000566(n - k + 1) * T(n, k - 1) + T(n - 1, k) for 0 < k < n. T(n, 0) = 1 and T(n, n) = T(n, n - 1) if n > 0.
Original entry on oeis.org
1, 1, 1, 1, 8, 8, 1, 26, 190, 190, 1, 60, 1270, 9080, 9080, 1, 115, 5180, 102320, 725320, 725320, 1, 196, 15960, 644960, 12334600, 87067520, 87067520, 1, 308, 40908, 2894900, 110761200, 2080769120, 14652451360, 14652451360
Offset: 0
Triangle T(n, k) starts:
[0] 1;
[1] 1, 1;
[2] 1, 8, 8;
[3] 1, 26, 190, 190;
[4] 1, 60, 1270, 9080, 9080;
[5] 1, 115, 5180, 102320, 725320, 725320;
[6] 1, 196, 15960, 644960, 12334600, 87067520, 87067520;
[7] 1, 308, 40908, 2894900, 110761200, 2080769120, 14652451360, 14652451360;
-
T := proc(n, k) option remember;
if k = 0 then 1 else if k = n then T(n, k-1) else
(((5*k - 5*n - 2)*(k - n - 1))/2) * T(n, k - 1) + T(n - 1, k) fi fi end:
seq(seq(T(n, k), k = 0..n), n = 0..8);
-
A366149[n_, k_] := A366149[n, k] = Which[k==0, 1, k==n, A366149[n, k-1], True, PolygonalNumber[7, n-k+1] A366149[n, k-1] + A366149[n-1, k]];
Table[A366149[n, k], {n,0,10}, {k,0,n}] (* Paolo Xausa, Jan 01 2024 *)
A365672
Triangle read by rows. T(n, k) = 1 if k = 0, equals T(n, k-1) if k = n, and otherwise is (n - k + 1) * (2 * (n - k) + 1) * T(n, k - 1) + T(n - 1, k).
Original entry on oeis.org
1, 1, 1, 1, 7, 7, 1, 22, 139, 139, 1, 50, 889, 5473, 5473, 1, 95, 3549, 58708, 357721, 357721, 1, 161, 10794, 360940, 5771821, 34988647, 34988647, 1, 252, 27426, 1595110, 50434901, 791512162, 4784061619, 4784061619
Offset: 0
Triangle T(n, k) starts:
[0] 1;
[1] 1, 1;
[2] 1, 7, 7;
[3] 1, 22, 139, 139;
[4] 1, 50, 889, 5473, 5473;
[5] 1, 95, 3549, 58708, 357721, 357721;
[6] 1, 161, 10794, 360940, 5771821, 34988647, 34988647;
[7] 1, 252, 27426, 1595110, 50434901, 791512162, 4784061619, 4784061619;
-
T := proc(n, k) option remember; if k = 0 then 1 else if k = n then T(n, k-1) else (n - k + 1) * (2 * (n - k) + 1) * T(n, k - 1) + T(n - 1, k) fi fi end:
Original entry on oeis.org
1, 1, 8, 190, 9080, 725320, 87067520, 14652451360, 3291452374400, 951504315644800, 344097665398707200, 152191547632887731200, 80821740082953347993600, 50749489515964112842240000, 37193794460546391363092480000, 31464706192542487393274091520000
Offset: 0
-
# Using function T from A366149.
a := n -> T(n, n): seq(a(n), n = 0..16);
-
A366149[n_,k_]:=A366149[n,k]=Which[k==0,1,k==n,A366149[n,k-1],True,PolygonalNumber[7,n-k+1]A366149[n,k-1]+A366149[n-1,k]];
Array[A366149[#,#]&,20,0] (* Paolo Xausa, Jan 01 2024 *)
A365674
Triangle read by rows. T(n, k) = ((n - k + 1)*(n - k + 2)/2) * T(n, k - 1) + T(n - 1, k) for 0 < k < n, T(n, 0) = 1 and T(n, n) = T(n, n - 1) for n > 0.
Original entry on oeis.org
1, 1, 1, 1, 4, 4, 1, 10, 34, 34, 1, 20, 154, 496, 496, 1, 35, 504, 3520, 11056, 11056, 1, 56, 1344, 16960, 112816, 349504, 349504, 1, 84, 3108, 63580, 748616, 4841200, 14873104, 14873104, 1, 120, 6468, 199408, 3739736, 42238560, 268304464, 819786496, 819786496
Offset: 0
[0] 1;
[1] 1, 1;
[2] 1, 4, 4;
[3] 1, 10, 34, 34;
[4] 1, 20, 154, 496, 496;
[5] 1, 35, 504, 3520, 11056, 11056;
[6] 1, 56, 1344, 16960, 112816, 349504, 349504;
[7] 1, 84, 3108, 63580, 748616, 4841200, 14873104, 14873104;
-
T := proc(n, k) option remember; if k = 0 then 1 else if k = n then T(n, k - 1) else ((n - k + 1)*(n - k + 2)/2) * T( n, k - 1) + T( n - 1, k) fi fi end:
seq(print(seq(T(n, k), k = 0..n)), n = 0..8);
A366138
Triangle read by rows. T(n, k) = A000326(n - k + 1) * T(n, k - 1) + T(n - 1, k) for 0 < k < n. T(n, 0) = 1 and T(n, n) = T(n, n - 1) if n > 0.
Original entry on oeis.org
1, 1, 1, 1, 6, 6, 1, 18, 96, 96, 1, 40, 576, 2976, 2976, 1, 75, 2226, 29688, 151416, 151416, 1, 126, 6636, 175680, 2259576, 11449296, 11449296, 1, 196, 16632, 757800, 18931176, 238623408, 1204566336, 1204566336
Offset: 0
Triangle T(n, k) starts:
[0] 1;
[1] 1, 1;
[2] 1, 6, 6;
[3] 1, 18, 96, 96;
[4] 1, 40, 576, 2976, 2976;
[5] 1, 75, 2226, 29688, 151416, 151416;
[6] 1, 126, 6636, 175680, 2259576, 11449296, 11449296;
[7] 1, 196, 16632, 757800, 18931176, 238623408, 1204566336, 1204566336;
-
T := proc(n, k) option remember; if k = 0 then 1 else if k = n then T(n, k-1)
else (((n - k + 1)*(3*n - 3*k + 2))/2) * T(n, k - 1) + T(n - 1, k) fi fi end:
seq(seq(T(n, k), k = 0..n), n = 0..8);
Showing 1-6 of 6 results.
Comments