A091742
Second column (m=1) of triangle A060063.
Original entry on oeis.org
1, 26, 775, 32516, 1894429, 148008446, 15005570563, 1920091871816, 303034557325177, 57867367557774626, 13156672434190398271, 3513034745241511676876, 1088776741031904909773845
Offset: 1
A091743
Third column (m=2) of triangle A060063 divided by 9.
Original entry on oeis.org
1, 131, 12702, 1331426, 163594663, 23979017805, 4187448766444, 864808560876788, 209300424292684605, 58811116750666789895, 19017126570296402361706, 7018937700334256743262646
Offset: 2
A091744
Fourth column (m=3) of triangle A060063 divided by 9.
Original entry on oeis.org
25, 9684, 2263474, 490886452, 111812888083, 27999019489624, 7844432790401028, 2473024180429410040, 877529810239038245325, 349669921564112871530060, 155914953071171948587819830, 77481281483613804213513143564
Offset: 3
A091745
Alternating row sums of triangle A060063.
Original entry on oeis.org
1, 0, -12, 240, 7056, -1472640, 60785472, 24634471680, -6666732039936, -266945607045120, 818181307311879168, -225753930347735961600, -114700401016766429097984, 133755245359458345703342080
Offset: 0
A052502
Number of permutations sigma of [3n] without fixed points such that sigma^3 = Id.
Original entry on oeis.org
1, 2, 40, 2240, 246400, 44844800, 12197785600, 4635158528000, 2345390215168000, 1524503639859200000, 1237896955565670400000, 1227993779921145036800000, 1461312598106162593792000000, 2054605512937264606871552000000
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
- F. W. J. Olver, Asymptotics and special functions, Academic Press, 1974, pages 336-344.
First column of array
A091752 (also negative of second column).
Trisection of column k=3 of
A261430.
-
List([0..20], n-> Factorial(3*n)/(3^n*Factorial(n))) # G. C. Greubel, May 14 2019
-
[Factorial(3*n)/(3^n*Factorial(n)): n in [0..20]]; // G. C. Greubel, May 14 2019
-
spec := [S,{S=Set(Union(Cycle(Z,card=3)))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
Table[(3*n)!/(3^n*n!), {n, 0, 20}] (* G. C. Greubel, May 14 2019 *)
-
{a(n) = (3*n)!/(3^n*n!)}; \\ G. C. Greubel, May 14 2019
-
[factorial(3*n)/(3^n*factorial(n)) for n in (0..20)] # G. C. Greubel, May 14 2019
A060058
Triangle of numbers related to A000330 (sum of squares) and A000364 (Euler numbers).
Original entry on oeis.org
1, 1, 1, 1, 5, 5, 1, 14, 61, 61, 1, 30, 331, 1385, 1385, 1, 55, 1211, 12284, 50521, 50521, 1, 91, 3486, 68060, 663061, 2702765, 2702765, 1, 140, 8526, 281210, 5162421, 49164554, 199360981, 199360981, 1, 204, 18522, 948002, 28862471, 510964090, 4798037791, 19391512145, 19391512145
Offset: 0
Triangle T(n, k) starts:
[0] 1;
[1] 1, 1;
[2] 1, 5, 5;
[3] 1, 14, 61, 61;
[4] 1, 30, 331, 1385, 1385;
[5] 1, 55, 1211, 12284, 50521, 50521;
[6] 1, 91, 3486, 68060, 663061, 2702765, 2702765;
[7] 1, 140, 8526, 281210, 5162421, 49164554, 199360981, 199360981;
...
-
T := proc(n, k) option remember; if k = 0 then 1 else if k = n then T(n, k-1) else (n - k + 1)^2 * T(n, k - 1) + T(n - 1, k) fi fi end:
seq(print(seq(T(n, k), k=0..n)), n=0..7); # Peter Luschny, Sep 30 2023
-
a[, -1] = 0; a[0, 0] = 1; a[n, m_] /; n < m = 0; a[n_, m_] := a[n, m] = a[n-1, m] + (n+1-m)^2*a[n, m-1]; Table[a[n, m], {n, 0, 8}, {m, 0, n}] // Flatten (* Jean-François Alcover, Jul 09 2013 *)
Original entry on oeis.org
61, 1385, 12284, 68060, 281210, 948002, 2749340, 7097948, 16700255, 36419955, 74551048, 144631240, 267951892, 476948260, 819683560, 1365672424, 2213323585, 3499318141, 5410278500, 8197124100
Offset: 0
-
Table[Binomial[n+6,6]*(280*n^3+2436*n^2+5906n+3843)/63,{n,0,19}] (* Indranil Ghosh, Feb 21 2017 *)
-
import math
def C(n, r):
f=math.factorial
return f(n)//f(r)//f(n-r)
def A060061(n):
return (C(n+6, 6)*(280*n**3+2436*n**2+5906*n+3843))//63 # Indranil Ghosh, Feb 21 2017
Original entry on oeis.org
5, 61, 331, 1211, 3486, 8526, 18522, 36762, 67947, 118547, 197197, 315133, 486668, 729708, 1066308, 1523268, 2132769, 2933049, 3969119, 5293519, 6967114, 9059930, 11652030, 14834430, 18710055, 23394735
Offset: 0
a(3) = binomial(7,4) * (20 * 3^2 + 88*3 +75) / 15 = (35 * 519)/15 = 1211. - _Indranil Ghosh_, Feb 21 2017
-
Table[(Binomial[n+4,4]*(20*n^2+88*n+75)/15),{n,0,25}] (* Indranil Ghosh, Feb 21 2017 *)
-
import math
def C(n, r):
f=math.factorial
return f(n)//f(r)//f(n-r)
def A060060(n):
return C(n+4, 4)*(20*n**2+88*n+75)//15 # Indranil Ghosh, Feb 21 2017
Original entry on oeis.org
1385, 50521, 663061, 5162421, 28862471, 127838711, 475638163, 1544454483, 4494470838, 11949575638, 29449955678, 68035028126, 148639284066, 309297261826, 616573557226, 1183184394986, 2194487337735, 3947417571735, 6906579371835, 11783600663835, 19647572529585
Offset: 0
-
CoefficientList[Series[(1385+32516*x+114318*x^2+87156*x^3+11025*x^4)/(1-x)^13 ,{x,0,20}],x] (* Indranil Ghosh, Feb 21 2017 *)
Showing 1-9 of 9 results.
Comments