A060079 Duplicate of A052502.
1, 2, 40, 2240, 246400, 44844800, 12197785600, 4635158528000, 2345390215168000
Offset: 0
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
Triangle begins: {1}; {1,1}; {5,26,9}; <-- p(2,n)=5+26*x+9*x^2. {61,775,1179,225}; ...
Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 0, 0, 0, 0, 0, 0, 0, 0, 0, ... 0, 0, 1, 0, 1, 0, 1, 0, 1, ... 0, 0, 0, 2, 0, 0, 2, 0, 0, ... 0, 0, 3, 0, 9, 0, 3, 0, 9, ... 0, 0, 0, 0, 0, 24, 20, 0, 0, ... 0, 0, 15, 40, 105, 0, 175, 0, 105, ... 0, 0, 0, 0, 0, 0, 210, 720, 0, ... 0, 0, 105, 0, 2625, 0, 4585, 0, 7665, ...
with(numtheory): A:= proc(n, k) option remember; `if`(n<0, 0, `if`(n=0, 1, add(mul(n-i, i=1..j-1)*A(n-j, k), j=divisors(k) minus {1}))) end: seq(seq(A(n, d-n), n=0..d), d=0..14);
A[0, 0] = A[0, 1] = 1; A[, 0|1] = 0; A[n, k_] := A[n, k] = If[n < 0, 0, If[n == 0, 1, Sum[Product[n - i, {i, 1, j - 1}]*A[n - j, k], {j, Rest @ Divisors[k]}]]]; Table[A[n, d - n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Jan 21 2017, after Alois P. Heinz *)
for n from 0 to 20 do printf(`%d,`,(4*n)! / (n! * 4^n)) od:
nn = 40; a = x^4/4;f[list_] := Select[list, # > 0 &]; f[Range[0, nn]! CoefficientList[Series[Exp[a], {x, 0, nn}], x]] (* Geoffrey Critzer, Dec 17 2011 *)
{ for (n=0, 100, write("b060706.txt", n, " ", (4*n)! / (n! * 4^n)); ) } \\ Harry J. Smith, Jul 09 2009
Triangle starts: {1}, {2, -2, 1}, {40, -40, 20, -6, 1}, {2240, -2240, 1120, -360, 80, -12, 1}, {246400, -246400, 123200, -40320, 9520, -1680, 220, -20, 1}.
w[n_, k_] := (Gamma[n-k/3] Gamma[1/3+n-k/3])/(Gamma[1/3-k/3] Gamma[-k/3]); T[n_, k_] := 9^n Sum[(-1)^(k - j) w[n, j]/((k - j)! j!), {j, 1, k}]; Table[Round[T[n,k]], {n,1,6}, {k, 2, 2 n}] (* Peter Luschny, Feb 05 2020 *)
List([0..15], n-> Factorial(5*n)/(5^n*Factorial(n))) # G. C. Greubel, May 14 2019
[Factorial(5*n)/(5^n*Factorial(n)): n in [0..15]]; // G. C. Greubel, May 14 2019
spec := [S,{S=Set(Union(Cycle(Z,card=5)))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
nn = 50; Select[Range[0, nn]! CoefficientList[Series[Exp[x^5/5], {x, 0, nn}], x], # > 0 &] (* Geoffrey Critzer, Aug 19 2012 *)
{a(n) = (5*n)!/(5^n*n!)}; \\ G. C. Greubel, May 14 2019
[factorial(5*n)/(5^n*factorial(n)) for n in (0..15)] # G. C. Greubel, May 14 2019
Some PDGF1 (z;n) are: PDGF1(z;n=3) = (1-5*z)*(1-3*z)^2*(1-z)^3 PDGF1(z;n=4) = ((1-7*z)*(1-5*z)^2*(1-3*z)^3*(1-z)^4) The first few GFKT1's are: GFKT1(z;p=0) = 1/(1-z) GFKT1(z;p=1) = -z*(1+z)/(1-z)^4 GFKT1(z;p=2) = z^2*(7+26*z+7*z^2)/(1-z)^7 Some KT1(z;p) polynomials are: KT1(z;p=2) = 7+26*z+7*z^2 KT1(z;p=3) = 3+166*z+951*z^2+951*z^3+166*z^4+3*z^5 KT1(z;p=4) = 263+8999*z+59637*z^2+108602*z^3+59637*z^4+8999*z^5+263*z^6
p:=2; fn:=sum((-1)^(n1+1)*binomial(3*p+1,n1) *a(n-n1),n1=1..3*p+1): fk:=rsolve(a(n) = fn, a(k)): for n2 from 0 to 3*p+1 do fz(n2):=product((1-(2*m-1)*z)^(n2+1-m),m=1..n2); a(n2):= coeff(fz(n2),z,p); end do: b:=n-> a(n): seq(b(n), n=0..3*p+1); a(n)=fn; a(k)=sort(simplify(fk)); GFKT1(p):=(sum(fk*z^k,k=0..infinity)); q1:=ldegree((numer(GFKT1(p)))): KT1(p):=sort((-1)^p*simplify((GFKT1(p))*(1-z)^(3*p+1)/z^q1),z, ascending);
a(4) = 3: 2143, 3412, 4321. a(5) = 20: 21453, 21534, 23154, 24513, 25431, 31254, 34152, 34521, 35124, 35412, 41523, 43251, 43512, 45132, 45213, 51432, 53214, 53421, 54123, 54231.
a:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1, add(mul(n-i, i=1..j-1)*a(n-j), j=[2, 3, 6]))) end: seq(a(n), n=0..30);
a[n_] := a[n] = If[n < 0, 0, If[n == 0, 1, Sum[Product[n - i, {i, 1, j - 1}]*a[n - j], {j, {2, 3, 6}}]]]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 10 2018, from Maple *)
0.231049060186648...
RealDigits[(Log[2]/3), 10, 100][[1]]
log(2)/3 \\ Charles R Greathouse IV, Jul 29 2011
a(4) = 3: 2143, 3412, 4321: a(5) = 24: 23451, 23514, 24153, 24531, 25134, 25413, 31452, 31524, 34251, 34512, 35214, 35421, 41253, 41532, 43152, 43521, 45123, 45231, 51234, 51423, 53124, 53412, 54132, 54213. a(6) = 15: 214365, 215634, 216543, 341265, 351624, 361542, 432165, 456123, 465132, 532614, 546213, 564312, 632541, 645231, 654321.
a:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1, add(mul(n-i, i=1..j-1)*a(n-j), j=[2, 5, 10]))) end: seq(a(n), n=0..30);
Comments