cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A091753 Fourth column (m=5) of array A091752 ((-1,2)Stirling2) divided by -6.

Original entry on oeis.org

1, 60, 6720, 1232000, 336336000, 128076748800, 64892219392000, 42217023873024000, 34301331896832000000, 34042166278055936000000, 40523794737397786214400000, 56991191326140341157888000000, 93484550838645539612655616000000, 176901534663898482651640627200000000
Offset: 3

Views

Author

Wolfdieter Lang, Feb 27 2004

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := ((n-1)*(n-2)/4) * (3*(n-2))!/((3^(n-2))*(n-2)!); Array[a, 20, 3] (* Amiram Eldar, Sep 01 2025 *)

Formula

a(n) = -A091752(n, 5)/6, n>=3.
a(n) = ((n-1)*(n-2)/4)*(3*(n-2))!/((3^(n-2))*(n-2)!) = ((n-1)*(n-2)/4)*A052502(n-2), n>=3.
G.f.: (x^3)*hypergeom([4/3, 5/3, 3], [], 9*x).
a(n) ~ 3^(2*n-7/2) * n^(2*n-2) / (4 * exp(2*n-5/n)). - Amiram Eldar, Sep 01 2025

A091754 Fifth column (m=6) of array A091752 ((-1,2)Stirling2).

Original entry on oeis.org

1, 80, 9520, 1786400, 493292800, 189065676800, 96179539456000, 62739188255744000, 51070871935283200000, 50753775178192486400000, 60478693661116393062400000, 85121458839683971088384000000, 139713174879733993267265536000000, 264509913735543445488643604480000000
Offset: 3

Views

Author

Wolfdieter Lang, Feb 27 2004

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := ((3*(n-2))!/((3^(n-2))*(n-2)!))*(9*n^2-27*n+12)/4!; Array[a, 20, 3] (* Amiram Eldar, Sep 01 2025 *)

Formula

a(n) = A091752(n, 6), n>=3.
a(n) = ((3*(n-2))!/((3^(n-2))*(n-2)!))*(9*n^2-27*n+12)/4! = A052502(n-2)*(9*n^2-27*n+12)/4!, n>=3.
a(n) ~ (3/e)^(2*n-5/2) * n^(2*n-2) / 8. - Amiram Eldar, Sep 01 2025

A091755 Sixth column (m=7) of array A091752 ((-1,2)Stirling2) divided by -12.

Original entry on oeis.org

1, 140, 27720, 7847840, 3049446400, 1564366003200, 1026108219136000, 838477001922560000, 835580445006827520000, 997744946185930342400000, 1406513375677181496524800000, 2311431202054422682730496000000, 4380418953582248141850148864000000, 9483101601549384660012281888768000000
Offset: 4

Views

Author

Wolfdieter Lang, Feb 27 2004

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := (3/(4*5!))*n*(n-3)*(3*(n-2))!/((3^(n-2))*(n-2)!); Array[a, 15, 4] (* Amiram Eldar, Aug 30 2025 *)

Formula

a(n) = -A091752(n, 7)/12, n>=4.
a(n) = (3/(4*5!))*n*(n-3)*(3*(n-2))!/((3^(n-2))*(n-2)!) = 3*n*(n-3) * A052502(n-2)/(4*5!), n>=4.
G.f.: (x^4)*hypergeom([7/3, 8/3, 5, 2], [4], 9*x).
a(n) ~ 3^(2*n-7/2) * n^(2*n-2) /(160 * exp(2*n-5/n)). - Amiram Eldar, Aug 30 2025

A091756 Seventh column (m=8) of array A091752 ((-1,2)Stirling2).

Original entry on oeis.org

1, 220, 48720, 14463680, 5762556800, 3000655257600, 1987324218880000, 1634736979972096000, 1636859558116823040000, 1961447726093804748800000, 2772502956616965206835200000, 4565871212782705024303104000000, 8667353356325850744087642112000000, 18789301668434870837372923150336000000
Offset: 4

Views

Author

Wolfdieter Lang, Feb 27 2004

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := (9/6!)*(n-3)*(9*n^3 - 45*n^2 + 36*n + 40)*(3*(n-3))!/((3^(n-3))*(n-3)!); Array[a, 15, 4] (* Amiram Eldar, Aug 30 2025 *)

Formula

a(n) = A091752(n, 8), n>=4.
a(n) = (9/6!)*(n-3)*(9*n^3-45*n^2+36*n+40)*(3*(n-3))!/((3^(n-3))*(n-3)!) = (9/6!)*(n-3)*(9*n^3-45*n^2+36*n+40) * A052502(n-3), n>=4.
a(n) ~ 3^(2*n-7/2) * n^(2*n-2) /(80 * exp(2*n-12/n)). - Amiram Eldar, Aug 30 2025

A052502 Number of permutations sigma of [3n] without fixed points such that sigma^3 = Id.

Original entry on oeis.org

1, 2, 40, 2240, 246400, 44844800, 12197785600, 4635158528000, 2345390215168000, 1524503639859200000, 1237896955565670400000, 1227993779921145036800000, 1461312598106162593792000000, 2054605512937264606871552000000
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

For n >= 1 a(n) is the size of the conjugacy class in the symmetric group S_(3n) consisting of permutations whose cycle decomposition is a product of n disjoint 3-cycles.

References

  • F. W. J. Olver, Asymptotics and special functions, Academic Press, 1974, pages 336-344.

Crossrefs

Cf. A000142. Row sums of triangle A060063.
First column of array A091752 (also negative of second column).
Equals row sums of A157702. - Johannes W. Meijer, Mar 07 2009
Karol A. Penson suggested that the row sums of A060063 coincide with this entry.
Trisection of column k=3 of A261430.

Programs

  • GAP
    List([0..20], n-> Factorial(3*n)/(3^n*Factorial(n))) # G. C. Greubel, May 14 2019
  • Magma
    [Factorial(3*n)/(3^n*Factorial(n)): n in [0..20]]; // G. C. Greubel, May 14 2019
    
  • Maple
    spec := [S,{S=Set(Union(Cycle(Z,card=3)))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    Table[(3*n)!/(3^n*n!), {n, 0, 20}] (* G. C. Greubel, May 14 2019 *)
  • PARI
    {a(n) = (3*n)!/(3^n*n!)}; \\ G. C. Greubel, May 14 2019
    
  • Sage
    [factorial(3*n)/(3^n*factorial(n)) for n in (0..20)] # G. C. Greubel, May 14 2019
    

Formula

From Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 21 2001: (Start)
a(n) = (3*n)!/(3^n * n!).
a(n) ~ sqrt(3) * 9^n * (n/e)^(2n). (End)
E.g.f.: (every third coefficient of) exp(x^3/3).
G.f.: hypergeometric3F0([1/3, 2/3, 1], [], 9*x).
D-finite with recurrence a(n) = (3*n-1)*(3*n-2)*a(n-1) for n >= 1, with a(0) = 1.
Write the generating function for this sequence in the form A(x) = Sum_{n >= 0} a(n)* x^(2*n+1)/(2*n+1)!. The g.f. A(x) satisfies A'(x)*( 1 - A(x)^2) = 1. Robert Israel remarks that consequently A(x) is a root of z^3 - 3*z + 3*x with A(0) = 0. Cf. A001147, A052504 and A060706. - Peter Bala, Jan 02 2015
From Peter Bala, Feb 27 2024: (Start)
u(n) := a(n+1) satisfies the second-order recurrence u(n) = 18*n*u(n-1) + (3*n - 1)^2*(3*n - 2)^2*u(n-2) with u(0) = 2 and u(1) = 40.
A second solution to the recurrence is given by v(n) := u(n)*Sum_{k = 0..n} (-1)^k/((3*k + 1)*(3*k + 2)) with v(0) = 1 and v(1) = 18.
This leads to the continued fraction expansion (2/3)*log(2) = Sum_{k = 0..n} (-1)^k/((3*k + 1)*(3*k + 2)) = Limit_{n -> oo} v(n)/u(n) = 1/(2 + (1*2)^2/(18 + (4*5)^2/(2*18 + (7*8)^2/(3*18 + (10*11)^2/(4*18 + ... ))))). (End)
From Gabriel B. Apolinario, Jul 30 2024: (Start)
a(n) = 3 * Integral_{t=0..oo} Ai(t)*t^(3*n) dt, where Ai(t) is the Airy function.
a(n) = Integral_{t=-oo..oo} Ai(t)*t^(3*n) dt. (End)

Extensions

Edited by Wolfdieter Lang, Feb 13 2004
Title improved by Geoffrey Critzer, Aug 14 2015

A091535 First column (k=2) of array A091534 ((5,2)-Stirling2).

Original entry on oeis.org

1, 20, 1120, 123200, 22422400, 6098892800, 2317579264000, 1172695107584000, 762251819929600000, 618948477782835200000, 613996889960572518400000, 730656299053081296896000000, 1027302756468632303435776000000, 1684776520608556977634672640000000
Offset: 1

Views

Author

Wolfdieter Lang, Jan 23 2004

Keywords

Comments

The scaled sequence (2/(3n-1)!!!)*a(n) = (3*n-2)!!! = A007559(n), n>=1.

Crossrefs

Third column of array A091752 ((-1, 2)-Stirling2).

Programs

  • Maple
    a := n -> 9^n*GAMMA(n+1/3)*GAMMA(n+2/3)*sqrt(3)/(4*Pi);
    seq(a(n), n=1..16); # Peter Luschny, Sep 17 2014
  • Mathematica
    a[n_] := (3*n-1)!/(2!*3^(n-1)*(n-1)!); Array[a, 15] (* Amiram Eldar, Sep 01 2025 *)

Formula

a(n) = (3*n-1)!/(2!*3^(n-(2-1))*(n-1)!) = ((3*n-1)!/2)/A032031(n-1).
a(n) = A091534(n, 2), n>=1.
E.g.f.: (hypergeom([1/3, 2/3, 1], [], 9*x)-1)/2.
a(n) = 9^n*Gamma(n+1/3)*Gamma(n+2/3)*sqrt(3)/(4*Pi). - Peter Luschny, Sep 17 2014
a(n) ~ (sqrt(3)/2) * (3*n/e)^(2*n). - Amiram Eldar, Sep 01 2025

A331816 Irregular triangle (read by rows) of coefficients T(n,k) of polynomials p(n,x) = Sum_{k=0..2*n} T(n,k) * x^k = (-1)^n * e^(x^3/3) * (((d/dx)^n) e^(-x^3/3)) for n >= 0 and 0 <= k <= 2*n.

Original entry on oeis.org

1, 0, 0, 1, 0, -2, 0, 0, 1, 2, 0, 0, -6, 0, 0, 1, 0, 0, 20, 0, 0, -12, 0, 0, 1, 0, -40, 0, 0, 80, 0, 0, -20, 0, 0, 1, 40, 0, 0, -360, 0, 0, 220, 0, 0, -30, 0, 0, 1, 0, 0, 1120, 0, 0, -1680, 0, 0, 490, 0, 0, -42, 0, 0, 1, 0, -2240, 0, 0, 9520, 0, 0, -5600, 0, 0, 952, 0, 0, -56, 0, 0, 1
Offset: 0

Views

Author

Werner Schulte, Jan 27 2020

Keywords

Comments

Let r(s;n,x) = Sum_{k=0..s*n} A(s;n,k)*x^k = (-1)^n * e^(x^(s+1)/(s+1)) * (((d/dx)^n) e^(-x^(s+1)/(s+1))) for n >= 0 and x complex and some fixed integer s >= 1. Special cases: A(1;n,k) = A066325(n,k) and A(2;n,k) is this triangle. Formula: A(s;n,k) = (Sum_{i=0..floor(k/(s+1))} (-1)^i * binomial((n+k) /(s+1),i) * binomial(n+k-(s+1)*i,n)) * (-1)^(n-(n+k)/(s+1)) * (n!) / ((s+1)^((n+k)/(s+1)) * (((n+k)/(s+1))!)) if (n+k) mod (s+1) = 0 else 0 with n >= 0 and 0 <= k <= s*n.
Recurrence: (1) A(s;n,k) = A(s;n-1,k-s) - (k+1) * A(s;n-1,k+1),
(2) r(s;n,x) = x^s * r(s;n-1,x) - ((d/dx) r(s;n-1,x)) for n > 0 with initial values A(s;0,0) = 1 = r(s;0,x) and A(s;n,k) = 0 if k < 0 or k > s*n or (n+k) mod (s+1) > 0;
E.g.f.: Sum_{n>=0} r(s;n,x)*t^n/(n!) = e^((x^(s+1)-(x-t)^(s+1))/(s+1)).
This generalization is result of a long and intensive discussion with Wolfdieter Lang. For more information see A091752.

Examples

			The irregular triangle T(n,k) starts:
n\k:  0     1    2    3    4     5   6     7   8   9  10   . . .      16
========================================================================
0  :  1
1  :  0     0    1
2  :  0    -2    0    0    1
3  :  2     0    0   -6    0     0   1
4  :  0     0   20    0    0   -12   0     0   1
5  :  0   -40    0    0   80     0   0   -20   0   0   1
6  : 40     0    0 -360    0     0 220     0   0 -30   0   0 1
7  :  0     0 1120    0    0 -1680   0     0 490   0   0 -42 0   0 1
8  :  0 -2240    0    0 9520     0   0 -5600   0   0 952   0 0 -56 0 0 1
etc.
		

Crossrefs

Row sums are (-1)^n*A252284(n).

Formula

T(n,k) = (-1)^k * (n!) * (Sum_{i=0..floor(k/3)} (-1)^i * binomial((n+k) /3,i) * binomial(n+k-3*i,n)) / (3^((n+k)/3) * ((n+k)/3)!) if (n+k) mod 3 = 0 else 0 with n >= 0 and 0 <= k <= 2*n.
Recurrence: (1) T(n,k) = T(n-1,k-2) - (k+1) * T(n-1,k+1),
(2) T(n,k) = T(n-1,k-2) - 2*(n-1)*T(n-2,k-1) + (n-1)*(n-2)*T(n-3,k),
(3) k*T(n,k) = 2*n*T(n-1,k-2) - n*(n-1)*T(n-2,k-1),
(4) p(n,x) = x^2 * p(n-1,x) - (d/dx) p(n-1,x),
(5) p(n,x) = x^2*p(n-1,x) - 2*(n-1)*x*p(n-2,x) + (n-1)*(n-2)*p(n-3,x),
(6) (d/dx) p(n,x) = 2*n*x*p(n-1,x) - n*(n-1)*p(n-2,x) for n > 0 with initial values T(0,0) = 1 = p(0,x) and T(n,k) = 0 if k < 0 or k > 2*n or (n+k) mod 3 > 0.
T(n,2*n) = 1 for n >= 0.
T(3*n,0) = -T(3*n-1,1) = 2*T(3*n-2,2) = ((3*n)!)/(3^n * (n!)) for n > 0.
The polynomials p(n,x) satisfy for n >= 0 and x complex the differential equation: 0 = (((d/dx)^3) p(n,x)) - 2*x^2*(((d/dx)^2) p(n,x)) + (x^4 + 2*(n-1)*x) * ((d/dx) p(n,x)) - (2*n*x^3-(n+3)*n) * p(n,x).
E.g.f.: Sum_{n>=0} p(n,x)*t^n/(n!) = e^((x^3-(x-t)^3)/3).
((d/dx)^m) p(n,x) = Sum_{i=0..m} (-1)^i * binomial(m,i) * p(m-i,-x) * p(n+i,x) for m,n >= 0 and x complex.
T(3*n-k,k) = A091752(n+1,k+2) for 0 <= k <= 2*n.
(-1)^(n-k) * T(n,3*k-n) = A049404(n,k) for n > 0 and (n+2)/3 <= k <= n.
Showing 1-7 of 7 results.