A053496
Number of degree-n permutations of order dividing 6.
Original entry on oeis.org
1, 1, 2, 6, 18, 66, 396, 2052, 12636, 91548, 625176, 4673736, 43575192, 377205336, 3624289488, 38829340656, 397695226896, 4338579616272, 54018173703456, 641634784488288, 8208962893594656, 113809776294348576, 1526808627197721792, 21533423236302943296
Offset: 0
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.10.
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x + x^2/2 +x^3/3 +x^6/6) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 14 2019
-
a:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1,
add(mul(n-i, i=1..j-1)*a(n-j), j=[1, 2, 3, 6])))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Feb 14 2013
-
a[n_] := a[n] = If[n<0, 0, If[n == 0, 1, Sum[Product[n-i, {i, 1, j-1}]*a[n-j], {j, {1, 2, 3, 6}}]]]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Mar 03 2014, after Alois P. Heinz *)
With[{m = 30}, CoefficientList[Series[Exp[x +x^2/2 +x^3/3 +x^6/6], {x, 0, m}], x]*Range[0, m]!] (* G. C. Greubel, May 14 2019 *)
-
my(x='x+O('x^30)); Vec(serlaplace( exp(x+x^2/2+x^3/3+x^6/6) )) \\ G. C. Greubel, May 14 2019
-
m = 30; T = taylor(exp(x +x^2/2 +x^3/3 +x^6/6), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 14 2019
A052502
Number of permutations sigma of [3n] without fixed points such that sigma^3 = Id.
Original entry on oeis.org
1, 2, 40, 2240, 246400, 44844800, 12197785600, 4635158528000, 2345390215168000, 1524503639859200000, 1237896955565670400000, 1227993779921145036800000, 1461312598106162593792000000, 2054605512937264606871552000000
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
- F. W. J. Olver, Asymptotics and special functions, Academic Press, 1974, pages 336-344.
First column of array
A091752 (also negative of second column).
Trisection of column k=3 of
A261430.
-
List([0..20], n-> Factorial(3*n)/(3^n*Factorial(n))) # G. C. Greubel, May 14 2019
-
[Factorial(3*n)/(3^n*Factorial(n)): n in [0..20]]; // G. C. Greubel, May 14 2019
-
spec := [S,{S=Set(Union(Cycle(Z,card=3)))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
Table[(3*n)!/(3^n*n!), {n, 0, 20}] (* G. C. Greubel, May 14 2019 *)
-
{a(n) = (3*n)!/(3^n*n!)}; \\ G. C. Greubel, May 14 2019
-
[factorial(3*n)/(3^n*factorial(n)) for n in (0..20)] # G. C. Greubel, May 14 2019
A261430
Number A(n,k) of permutations p of [n] without fixed points such that p^k = Id; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 2, 3, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 9, 0, 15, 0, 0, 1, 0, 0, 2, 0, 0, 40, 0, 0, 0, 1, 0, 1, 0, 3, 24, 105, 0, 105, 0, 0, 1, 0, 0, 0, 0, 20, 0, 0, 0, 0, 0, 0, 1, 0, 1, 2, 9, 0, 175, 0, 2625, 2240, 945, 0, 0
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 0, 0, 0, 0, 0, 0, 0, 0, ...
0, 0, 1, 0, 1, 0, 1, 0, 1, ...
0, 0, 0, 2, 0, 0, 2, 0, 0, ...
0, 0, 3, 0, 9, 0, 3, 0, 9, ...
0, 0, 0, 0, 0, 24, 20, 0, 0, ...
0, 0, 15, 40, 105, 0, 175, 0, 105, ...
0, 0, 0, 0, 0, 0, 210, 720, 0, ...
0, 0, 105, 0, 2625, 0, 4585, 0, 7665, ...
Columns k=0+1,2-10 give:
A000007,
A001147,
A052502,
A052503,
A052504,
A261317,
A261427,
A261428,
A261429,
A261381.
-
with(numtheory):
A:= proc(n, k) option remember; `if`(n<0, 0, `if`(n=0, 1,
add(mul(n-i, i=1..j-1)*A(n-j, k), j=divisors(k) minus {1})))
end:
seq(seq(A(n, d-n), n=0..d), d=0..14);
-
A[0, 0] = A[0, 1] = 1; A[, 0|1] = 0; A[n, k_] := A[n, k] = If[n < 0, 0, If[n == 0, 1, Sum[Product[n - i, {i, 1, j - 1}]*A[n - j, k], {j, Rest @ Divisors[k]}]]]; Table[A[n, d - n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Jan 21 2017, after Alois P. Heinz *)
A052504
Number of permutations sigma of [5n] without fixed points such that sigma^5 = Id.
Original entry on oeis.org
1, 24, 72576, 1743565824, 162193467211776, 41363226782215962624, 23578031983305871878782976, 26242915470187034742010543079424, 51804144968120491069562620291816882176, 168779147605615794796420686413626405734580224, 858246016274098851318874304509764200194078068965376
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
Quintisection of column k=5 of
A261430.
-
List([0..15], n-> Factorial(5*n)/(5^n*Factorial(n))) # G. C. Greubel, May 14 2019
-
[Factorial(5*n)/(5^n*Factorial(n)): n in [0..15]]; // G. C. Greubel, May 14 2019
-
spec := [S,{S=Set(Union(Cycle(Z,card=5)))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
nn = 50; Select[Range[0, nn]! CoefficientList[Series[Exp[x^5/5], {x, 0, nn}], x], # > 0 &] (* Geoffrey Critzer, Aug 19 2012 *)
-
{a(n) = (5*n)!/(5^n*n!)}; \\ G. C. Greubel, May 14 2019
-
[factorial(5*n)/(5^n*factorial(n)) for n in (0..15)] # G. C. Greubel, May 14 2019
A261381
Number of permutations sigma of [n] without fixed points such that sigma^10 = Id.
Original entry on oeis.org
1, 0, 1, 0, 3, 24, 15, 504, 105, 9072, 436401, 166320, 28750491, 3243240, 1307809503, 27965161224, 52309001745, 3795543015264, 2000776242465, 324424646818272, 17268536366932851, 22708075360010040, 3974396337125445231, 1436250980764880280, 548178165969608527353
Offset: 0
a(4) = 3: 2143, 3412, 4321:
a(5) = 24: 23451, 23514, 24153, 24531, 25134, 25413, 31452, 31524, 34251, 34512, 35214, 35421, 41253, 41532, 43152, 43521, 45123, 45231, 51234, 51423, 53124, 53412, 54132, 54213.
a(6) = 15: 214365, 215634, 216543, 341265, 351624, 361542, 432165, 456123, 465132, 532614, 546213, 564312, 632541, 645231, 654321.
-
a:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1,
add(mul(n-i, i=1..j-1)*a(n-j), j=[2, 5, 10])))
end:
seq(a(n), n=0..30);
A052503
Number of permutations sigma of [2n] without fixed points such that sigma^4 = Id.
Original entry on oeis.org
1, 1, 9, 105, 2625, 76545, 3440745, 176080905, 12034447425, 922995698625, 87505195602825, 9203114782686825, 1141501848477415425, 155540530213013570625, 24232951756530007115625, 4112826185329479728735625, 781060320618828163499210625
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
Bisection of column k=4 of
A261430.
-
m:=40; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x^2/2 + x^4/4) )); [Factorial(2*n-2)*b[2*n-1]: n in [1..Floor((m-2)/2)]]; // G. C. Greubel, May 14 2019
-
spec := [S,{S=Set(Union(Cycle(Z,card=2),Cycle(Z,card=4)))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
With[{nmax = 40}, CoefficientList[Series[Exp[x^2*(2 + x^2)/4], {x, 0, nmax}], x]*(Range[0, nmax])!][[1 ;; -1 ;; 2]] (* G. C. Greubel, May 14 2019 *)
-
x='x+O('x^40); v=Vec(serlaplace( exp(x^2/2 + x^4/4) )); vector(#v\2, n, v[2*n-1]) \\ G. C. Greubel, May 14 2019
-
m = 40; T = taylor(exp(x^2/2 + x^4/4), x, 0, 2*m+2); [factorial(2*n)*T.coefficient(x, 2*n) for n in (0..m)] # G. C. Greubel, May 14 2019
Showing 1-6 of 6 results.
Comments