A052502
Number of permutations sigma of [3n] without fixed points such that sigma^3 = Id.
Original entry on oeis.org
1, 2, 40, 2240, 246400, 44844800, 12197785600, 4635158528000, 2345390215168000, 1524503639859200000, 1237896955565670400000, 1227993779921145036800000, 1461312598106162593792000000, 2054605512937264606871552000000
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
- F. W. J. Olver, Asymptotics and special functions, Academic Press, 1974, pages 336-344.
First column of array
A091752 (also negative of second column).
Trisection of column k=3 of
A261430.
-
List([0..20], n-> Factorial(3*n)/(3^n*Factorial(n))) # G. C. Greubel, May 14 2019
-
[Factorial(3*n)/(3^n*Factorial(n)): n in [0..20]]; // G. C. Greubel, May 14 2019
-
spec := [S,{S=Set(Union(Cycle(Z,card=3)))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
Table[(3*n)!/(3^n*n!), {n, 0, 20}] (* G. C. Greubel, May 14 2019 *)
-
{a(n) = (3*n)!/(3^n*n!)}; \\ G. C. Greubel, May 14 2019
-
[factorial(3*n)/(3^n*factorial(n)) for n in (0..20)] # G. C. Greubel, May 14 2019
A052504
Number of permutations sigma of [5n] without fixed points such that sigma^5 = Id.
Original entry on oeis.org
1, 24, 72576, 1743565824, 162193467211776, 41363226782215962624, 23578031983305871878782976, 26242915470187034742010543079424, 51804144968120491069562620291816882176, 168779147605615794796420686413626405734580224, 858246016274098851318874304509764200194078068965376
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
Quintisection of column k=5 of
A261430.
-
List([0..15], n-> Factorial(5*n)/(5^n*Factorial(n))) # G. C. Greubel, May 14 2019
-
[Factorial(5*n)/(5^n*Factorial(n)): n in [0..15]]; // G. C. Greubel, May 14 2019
-
spec := [S,{S=Set(Union(Cycle(Z,card=5)))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
nn = 50; Select[Range[0, nn]! CoefficientList[Series[Exp[x^5/5], {x, 0, nn}], x], # > 0 &] (* Geoffrey Critzer, Aug 19 2012 *)
-
{a(n) = (5*n)!/(5^n*n!)}; \\ G. C. Greubel, May 14 2019
-
[factorial(5*n)/(5^n*factorial(n)) for n in (0..15)] # G. C. Greubel, May 14 2019
A261317
Number of permutations sigma of [n] without fixed points such that sigma^6 = Id.
Original entry on oeis.org
1, 0, 1, 2, 3, 20, 175, 210, 4585, 24920, 101745, 1266650, 13562395, 48588540, 1082015935, 9135376250, 63098660625, 1069777108400, 13628391601825, 88520971388850, 2134604966569075, 23945393042070500, 236084869688242575, 4893567386193135650, 72576130763294383225
Offset: 0
a(4) = 3: 2143, 3412, 4321.
a(5) = 20: 21453, 21534, 23154, 24513, 25431, 31254, 34152, 34521, 35124, 35412, 41523, 43251, 43512, 45132, 45213, 51432, 53214, 53421, 54123, 54231.
-
a:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1,
add(mul(n-i, i=1..j-1)*a(n-j), j=[2, 3, 6])))
end:
seq(a(n), n=0..30);
-
a[n_] := a[n] = If[n < 0, 0, If[n == 0, 1, Sum[Product[n - i, {i, 1, j - 1}]*a[n - j], {j, {2, 3, 6}}]]];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 10 2018, from Maple *)
A261381
Number of permutations sigma of [n] without fixed points such that sigma^10 = Id.
Original entry on oeis.org
1, 0, 1, 0, 3, 24, 15, 504, 105, 9072, 436401, 166320, 28750491, 3243240, 1307809503, 27965161224, 52309001745, 3795543015264, 2000776242465, 324424646818272, 17268536366932851, 22708075360010040, 3974396337125445231, 1436250980764880280, 548178165969608527353
Offset: 0
a(4) = 3: 2143, 3412, 4321:
a(5) = 24: 23451, 23514, 24153, 24531, 25134, 25413, 31452, 31524, 34251, 34512, 35214, 35421, 41253, 41532, 43152, 43521, 45123, 45231, 51234, 51423, 53124, 53412, 54132, 54213.
a(6) = 15: 214365, 215634, 216543, 341265, 351624, 361542, 432165, 456123, 465132, 532614, 546213, 564312, 632541, 645231, 654321.
-
a:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1,
add(mul(n-i, i=1..j-1)*a(n-j), j=[2, 5, 10])))
end:
seq(a(n), n=0..30);
A052503
Number of permutations sigma of [2n] without fixed points such that sigma^4 = Id.
Original entry on oeis.org
1, 1, 9, 105, 2625, 76545, 3440745, 176080905, 12034447425, 922995698625, 87505195602825, 9203114782686825, 1141501848477415425, 155540530213013570625, 24232951756530007115625, 4112826185329479728735625, 781060320618828163499210625
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
Bisection of column k=4 of
A261430.
-
m:=40; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x^2/2 + x^4/4) )); [Factorial(2*n-2)*b[2*n-1]: n in [1..Floor((m-2)/2)]]; // G. C. Greubel, May 14 2019
-
spec := [S,{S=Set(Union(Cycle(Z,card=2),Cycle(Z,card=4)))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
With[{nmax = 40}, CoefficientList[Series[Exp[x^2*(2 + x^2)/4], {x, 0, nmax}], x]*(Range[0, nmax])!][[1 ;; -1 ;; 2]] (* G. C. Greubel, May 14 2019 *)
-
x='x+O('x^40); v=Vec(serlaplace( exp(x^2/2 + x^4/4) )); vector(#v\2, n, v[2*n-1]) \\ G. C. Greubel, May 14 2019
-
m = 40; T = taylor(exp(x^2/2 + x^4/4), x, 0, 2*m+2); [factorial(2*n)*T.coefficient(x, 2*n) for n in (0..m)] # G. C. Greubel, May 14 2019
A261431
Number of permutations p of [n] without fixed points such that p^n = Id.
Original entry on oeis.org
1, 0, 1, 2, 9, 24, 175, 720, 7665, 42560, 436401, 3628800, 70215145, 479001600, 7116730335, 88966701824, 1653438211425, 20922789888000, 457688776369825, 6402373705728000, 145083396337080201, 2457732174030848000, 55735573291977790575, 1124000727777607680000
Offset: 0
-
with(numtheory):
A:= proc(n, k) option remember; `if`(n<0, 0, `if`(n=0, 1,
add(mul(n-i, i=1..j-1)*A(n-j, k), j=divisors(k) minus {1})))
end:
a:= n-> A(n$2):
seq(a(n), n=0..25);
-
A[n_, k_] := A[n, k] = If[n < 0, 0, If[n == 0, 1, Sum[Product[n - i, {i, 1, j - 1}] A[n - j, k], {j, Divisors[k] ~Complement~ {1}}]]];
a[n_] := A[n, n];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Mar 23 2017, translated from Maple *)
A261427
Number of permutations p of [7n] without fixed points such that p^7 = Id.
Original entry on oeis.org
1, 720, 889574400, 24825530695680000, 5290995845684330496000000, 5123434663327851951402516480000000, 16586604100059403377645257954741452800000000, 146550752102252281868362306608987740351496192000000000
Offset: 0
7-section of column k=7 of
A261430.
-
a:= proc(n) option remember; `if`(n=0, 1,
mul(7*n-i, i=1..6)*a(n-1))
end:
seq(a(n), n=0..10);
A261428
Number of permutations p of [2n] without fixed points such that p^8 = Id.
Original entry on oeis.org
1, 1, 9, 105, 7665, 303345, 25893945, 1765268505, 345763843425, 42813526781025, 9399638261838825, 1573582072888650825, 563295733721953657425, 139523356060051359020625, 55722660999371761475705625, 17053184982967015188566885625, 9496879931794641573011009810625
Offset: 0
Bisection of column k=8 of
A261430.
-
b:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1,
add(mul(n-i, i=1..j-1)*b(n-j), j=[2,4,8])))
end:
a:= n-> b(2*n):
seq(a(n), n=0..20);
A261429
Number of permutations p of [3n] without fixed points such that p^9 = Id.
Original entry on oeis.org
1, 2, 40, 42560, 17987200, 8116908800, 43924225945600, 108050180446208000, 215140299047145472000, 2906668948375666073600000, 21059302309493030917734400000, 112131367456110324265700556800000, 2891761281909068919518711775232000000
Offset: 0
Trisection of column k=9 of
A261430.
-
b:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1,
add(mul(n-i, i=1..j-1)*b(n-j), j=[3,9])))
end:
a:= n-> b(3*n):
seq(a(n), n=0..15);
Showing 1-9 of 9 results.
Comments