cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A052502 Number of permutations sigma of [3n] without fixed points such that sigma^3 = Id.

Original entry on oeis.org

1, 2, 40, 2240, 246400, 44844800, 12197785600, 4635158528000, 2345390215168000, 1524503639859200000, 1237896955565670400000, 1227993779921145036800000, 1461312598106162593792000000, 2054605512937264606871552000000
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

For n >= 1 a(n) is the size of the conjugacy class in the symmetric group S_(3n) consisting of permutations whose cycle decomposition is a product of n disjoint 3-cycles.

References

  • F. W. J. Olver, Asymptotics and special functions, Academic Press, 1974, pages 336-344.

Crossrefs

Cf. A000142. Row sums of triangle A060063.
First column of array A091752 (also negative of second column).
Equals row sums of A157702. - Johannes W. Meijer, Mar 07 2009
Karol A. Penson suggested that the row sums of A060063 coincide with this entry.
Trisection of column k=3 of A261430.

Programs

  • GAP
    List([0..20], n-> Factorial(3*n)/(3^n*Factorial(n))) # G. C. Greubel, May 14 2019
  • Magma
    [Factorial(3*n)/(3^n*Factorial(n)): n in [0..20]]; // G. C. Greubel, May 14 2019
    
  • Maple
    spec := [S,{S=Set(Union(Cycle(Z,card=3)))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    Table[(3*n)!/(3^n*n!), {n, 0, 20}] (* G. C. Greubel, May 14 2019 *)
  • PARI
    {a(n) = (3*n)!/(3^n*n!)}; \\ G. C. Greubel, May 14 2019
    
  • Sage
    [factorial(3*n)/(3^n*factorial(n)) for n in (0..20)] # G. C. Greubel, May 14 2019
    

Formula

From Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 21 2001: (Start)
a(n) = (3*n)!/(3^n * n!).
a(n) ~ sqrt(3) * 9^n * (n/e)^(2n). (End)
E.g.f.: (every third coefficient of) exp(x^3/3).
G.f.: hypergeometric3F0([1/3, 2/3, 1], [], 9*x).
D-finite with recurrence a(n) = (3*n-1)*(3*n-2)*a(n-1) for n >= 1, with a(0) = 1.
Write the generating function for this sequence in the form A(x) = Sum_{n >= 0} a(n)* x^(2*n+1)/(2*n+1)!. The g.f. A(x) satisfies A'(x)*( 1 - A(x)^2) = 1. Robert Israel remarks that consequently A(x) is a root of z^3 - 3*z + 3*x with A(0) = 0. Cf. A001147, A052504 and A060706. - Peter Bala, Jan 02 2015
From Peter Bala, Feb 27 2024: (Start)
u(n) := a(n+1) satisfies the second-order recurrence u(n) = 18*n*u(n-1) + (3*n - 1)^2*(3*n - 2)^2*u(n-2) with u(0) = 2 and u(1) = 40.
A second solution to the recurrence is given by v(n) := u(n)*Sum_{k = 0..n} (-1)^k/((3*k + 1)*(3*k + 2)) with v(0) = 1 and v(1) = 18.
This leads to the continued fraction expansion (2/3)*log(2) = Sum_{k = 0..n} (-1)^k/((3*k + 1)*(3*k + 2)) = Limit_{n -> oo} v(n)/u(n) = 1/(2 + (1*2)^2/(18 + (4*5)^2/(2*18 + (7*8)^2/(3*18 + (10*11)^2/(4*18 + ... ))))). (End)
From Gabriel B. Apolinario, Jul 30 2024: (Start)
a(n) = 3 * Integral_{t=0..oo} Ai(t)*t^(3*n) dt, where Ai(t) is the Airy function.
a(n) = Integral_{t=-oo..oo} Ai(t)*t^(3*n) dt. (End)

Extensions

Edited by Wolfdieter Lang, Feb 13 2004
Title improved by Geoffrey Critzer, Aug 14 2015

A052504 Number of permutations sigma of [5n] without fixed points such that sigma^5 = Id.

Original entry on oeis.org

1, 24, 72576, 1743565824, 162193467211776, 41363226782215962624, 23578031983305871878782976, 26242915470187034742010543079424, 51804144968120491069562620291816882176, 168779147605615794796420686413626405734580224, 858246016274098851318874304509764200194078068965376
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

For n >= 1 a(n) is the size of the conjugacy class in the symmetric group S_(5n) consisting of permutations whose cycle decomposition is a product of n disjoint 5-cycles.

Crossrefs

Quintisection of column k=5 of A261430.

Programs

  • GAP
    List([0..15], n-> Factorial(5*n)/(5^n*Factorial(n))) # G. C. Greubel, May 14 2019
  • Magma
    [Factorial(5*n)/(5^n*Factorial(n)): n in [0..15]]; // G. C. Greubel, May 14 2019
    
  • Maple
    spec := [S,{S=Set(Union(Cycle(Z,card=5)))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    nn = 50; Select[Range[0, nn]! CoefficientList[Series[Exp[x^5/5], {x, 0, nn}], x], # > 0 &]  (* Geoffrey Critzer, Aug 19 2012 *)
  • PARI
    {a(n) = (5*n)!/(5^n*n!)}; \\ G. C. Greubel, May 14 2019
    
  • Sage
    [factorial(5*n)/(5^n*factorial(n)) for n in (0..15)] # G. C. Greubel, May 14 2019
    

Formula

a(n) = (5n)! * [x^(5n)] exp(x^5/5).
From Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 21 2001: (Start)
a(n) = (5*n)! / (n! * 5^n).
a(0) = 1, a(1) = 24, for n >= 2 a(n) = a(n-1) * C(5*n - 1, 4)* 24 = (5*n-1)*(5*n-2)*(5*n-3)*(5*n-4)*a(n-1).
a(n) ~ sqrt(5) * 625^n * (n/e)^(4n). (End)
Write the generating function for this sequence in the form A(x) = Sum_{n >= 0} a(n)* x^(4*n+1)/(4*n+1)!. Then A'(x)*( 1 - A(x)^4) = 1. Cf. A052502. - Peter Bala, Jan 02 2015

A261317 Number of permutations sigma of [n] without fixed points such that sigma^6 = Id.

Original entry on oeis.org

1, 0, 1, 2, 3, 20, 175, 210, 4585, 24920, 101745, 1266650, 13562395, 48588540, 1082015935, 9135376250, 63098660625, 1069777108400, 13628391601825, 88520971388850, 2134604966569075, 23945393042070500, 236084869688242575, 4893567386193135650, 72576130763294383225
Offset: 0

Views

Author

Alois P. Heinz, Aug 14 2015

Keywords

Examples

			a(4) = 3: 2143, 3412, 4321.
a(5) = 20: 21453, 21534, 23154, 24513, 25431, 31254, 34152, 34521, 35124, 35412, 41523, 43251, 43512, 45132, 45213, 51432, 53214, 53421, 54123, 54231.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1,
           add(mul(n-i, i=1..j-1)*a(n-j), j=[2, 3, 6])))
        end:
    seq(a(n), n=0..30);
  • Mathematica
    a[n_] := a[n] = If[n < 0, 0, If[n == 0, 1, Sum[Product[n - i, {i, 1, j - 1}]*a[n - j], {j, {2, 3, 6}}]]];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 10 2018, from Maple *)

Formula

E.g.f.: exp(x^2*(x^4+2*x+3)/6).
D-finite with recurrence a(n) +(-n+1)*a(n-2) -(n-1)*(n-2)*a(n-3) -(n-5)*(n-1)*(n-2)*(n-3)*(n-4)*a(n-6)=0. - R. J. Mathar, Jul 04 2023

A261381 Number of permutations sigma of [n] without fixed points such that sigma^10 = Id.

Original entry on oeis.org

1, 0, 1, 0, 3, 24, 15, 504, 105, 9072, 436401, 166320, 28750491, 3243240, 1307809503, 27965161224, 52309001745, 3795543015264, 2000776242465, 324424646818272, 17268536366932851, 22708075360010040, 3974396337125445231, 1436250980764880280, 548178165969608527353
Offset: 0

Views

Author

Alois P. Heinz, Aug 17 2015

Keywords

Examples

			a(4) = 3: 2143, 3412, 4321:
a(5) = 24: 23451, 23514, 24153, 24531, 25134, 25413, 31452, 31524, 34251, 34512, 35214, 35421, 41253, 41532, 43152, 43521, 45123, 45231, 51234, 51423, 53124, 53412, 54132, 54213.
a(6) = 15: 214365, 215634, 216543, 341265, 351624, 361542, 432165, 456123, 465132, 532614, 546213, 564312, 632541, 645231, 654321.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1,
           add(mul(n-i, i=1..j-1)*a(n-j), j=[2, 5, 10])))
        end:
    seq(a(n), n=0..30);

Formula

E.g.f.: exp(x^2/2+x^5/5+x^10/10).

A052503 Number of permutations sigma of [2n] without fixed points such that sigma^4 = Id.

Original entry on oeis.org

1, 1, 9, 105, 2625, 76545, 3440745, 176080905, 12034447425, 922995698625, 87505195602825, 9203114782686825, 1141501848477415425, 155540530213013570625, 24232951756530007115625, 4112826185329479728735625, 781060320618828163499210625
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Crossrefs

Bisection of column k=4 of A261430.

Programs

  • Magma
    m:=40; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x^2/2 + x^4/4) )); [Factorial(2*n-2)*b[2*n-1]: n in [1..Floor((m-2)/2)]]; // G. C. Greubel, May 14 2019
    
  • Maple
    spec := [S,{S=Set(Union(Cycle(Z,card=2),Cycle(Z,card=4)))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    With[{nmax = 40}, CoefficientList[Series[Exp[x^2*(2 + x^2)/4], {x, 0, nmax}], x]*(Range[0, nmax])!][[1 ;; -1 ;; 2]] (* G. C. Greubel, May 14 2019 *)
  • PARI
    x='x+O('x^40); v=Vec(serlaplace( exp(x^2/2 + x^4/4) )); vector(#v\2, n, v[2*n-1]) \\ G. C. Greubel, May 14 2019
    
  • Sage
    m = 40; T = taylor(exp(x^2/2 + x^4/4), x, 0, 2*m+2); [factorial(2*n)*T.coefficient(x, 2*n) for n in (0..m)] # G. C. Greubel, May 14 2019

Formula

a(n) = (2n)! * [x^(2n)] exp(x^2/2 + x^4/4).
D-finite with recurrence a(n) +(-2*n+1)*a(n-1) -2*(n-1)*(2*n-1)*(2*n-3)*a(n-2)=0, with a(0)=1, a(1)=1, a(2)=9. - Corrected by R. J. Mathar, Feb 20 2020 to skip zeros.
a(n) = 2^n*Gamma(n+1/2)*A047974(n)/Pi^(1/2). - Mark van Hoeij, Oct 30 2011

A261431 Number of permutations p of [n] without fixed points such that p^n = Id.

Original entry on oeis.org

1, 0, 1, 2, 9, 24, 175, 720, 7665, 42560, 436401, 3628800, 70215145, 479001600, 7116730335, 88966701824, 1653438211425, 20922789888000, 457688776369825, 6402373705728000, 145083396337080201, 2457732174030848000, 55735573291977790575, 1124000727777607680000
Offset: 0

Views

Author

Alois P. Heinz, Aug 18 2015

Keywords

Crossrefs

Main diagonal of A261430.
Cf. A074759.

Programs

  • Maple
    with(numtheory):
    A:= proc(n, k) option remember; `if`(n<0, 0, `if`(n=0, 1,
          add(mul(n-i, i=1..j-1)*A(n-j, k), j=divisors(k) minus {1})))
        end:
    a:= n-> A(n$2):
    seq(a(n), n=0..25);
  • Mathematica
    A[n_, k_] := A[n, k] = If[n < 0, 0, If[n == 0, 1, Sum[Product[n - i, {i, 1, j - 1}] A[n - j, k], {j, Divisors[k] ~Complement~ {1}}]]];
    a[n_] := A[n, n];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Mar 23 2017, translated from Maple *)

Formula

a(n) = n! * [x^n] exp(Sum_{d|n, d>1} x^d/d).

A261427 Number of permutations p of [7n] without fixed points such that p^7 = Id.

Original entry on oeis.org

1, 720, 889574400, 24825530695680000, 5290995845684330496000000, 5123434663327851951402516480000000, 16586604100059403377645257954741452800000000, 146550752102252281868362306608987740351496192000000000
Offset: 0

Views

Author

Alois P. Heinz, Aug 18 2015

Keywords

Crossrefs

7-section of column k=7 of A261430.
Cf. A053497.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1,
          mul(7*n-i, i=1..6)*a(n-1))
        end:
    seq(a(n), n=0..10);

Formula

a(n) = (7n)! * [x^(7n)] exp(x^7/7).

A261428 Number of permutations p of [2n] without fixed points such that p^8 = Id.

Original entry on oeis.org

1, 1, 9, 105, 7665, 303345, 25893945, 1765268505, 345763843425, 42813526781025, 9399638261838825, 1573582072888650825, 563295733721953657425, 139523356060051359020625, 55722660999371761475705625, 17053184982967015188566885625, 9496879931794641573011009810625
Offset: 0

Views

Author

Alois P. Heinz, Aug 18 2015

Keywords

Crossrefs

Bisection of column k=8 of A261430.
Cf. A053498.

Programs

  • Maple
    b:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1,
           add(mul(n-i, i=1..j-1)*b(n-j), j=[2,4,8])))
        end:
    a:= n-> b(2*n):
    seq(a(n), n=0..20);

Formula

a(n) = (2n)! * [x^(2n)] exp(x^2/2+x^4/4+x^8/8).

A261429 Number of permutations p of [3n] without fixed points such that p^9 = Id.

Original entry on oeis.org

1, 2, 40, 42560, 17987200, 8116908800, 43924225945600, 108050180446208000, 215140299047145472000, 2906668948375666073600000, 21059302309493030917734400000, 112131367456110324265700556800000, 2891761281909068919518711775232000000
Offset: 0

Views

Author

Alois P. Heinz, Aug 18 2015

Keywords

Crossrefs

Trisection of column k=9 of A261430.
Cf. A053499.

Programs

  • Maple
    b:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1,
           add(mul(n-i, i=1..j-1)*b(n-j), j=[3,9])))
        end:
    a:= n-> b(3*n):
    seq(a(n), n=0..15);

Formula

a(n) = (3n)! * [x^(3n)] exp(x^3/3+x^9/9).
Showing 1-9 of 9 results.