cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A261430 Number A(n,k) of permutations p of [n] without fixed points such that p^k = Id; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 2, 3, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 9, 0, 15, 0, 0, 1, 0, 0, 2, 0, 0, 40, 0, 0, 0, 1, 0, 1, 0, 3, 24, 105, 0, 105, 0, 0, 1, 0, 0, 0, 0, 20, 0, 0, 0, 0, 0, 0, 1, 0, 1, 2, 9, 0, 175, 0, 2625, 2240, 945, 0, 0
Offset: 0

Views

Author

Alois P. Heinz, Aug 18 2015

Keywords

Examples

			Square array A(n,k) begins:
  1, 1,   1,  1,    1,  1,    1,   1,    1, ...
  0, 0,   0,  0,    0,  0,    0,   0,    0, ...
  0, 0,   1,  0,    1,  0,    1,   0,    1, ...
  0, 0,   0,  2,    0,  0,    2,   0,    0, ...
  0, 0,   3,  0,    9,  0,    3,   0,    9, ...
  0, 0,   0,  0,    0, 24,   20,   0,    0, ...
  0, 0,  15, 40,  105,  0,  175,   0,  105, ...
  0, 0,   0,  0,    0,  0,  210, 720,    0, ...
  0, 0, 105,  0, 2625,  0, 4585,   0, 7665, ...
		

Crossrefs

Main diagonal gives A261431.
Cf. A008307.

Programs

  • Maple
    with(numtheory):
    A:= proc(n, k) option remember; `if`(n<0, 0, `if`(n=0, 1,
          add(mul(n-i, i=1..j-1)*A(n-j, k), j=divisors(k) minus {1})))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    A[0, 0] = A[0, 1] = 1; A[, 0|1] = 0; A[n, k_] := A[n, k] = If[n < 0, 0, If[n == 0, 1, Sum[Product[n - i, {i, 1, j - 1}]*A[n - j, k], {j, Rest @ Divisors[k]}]]]; Table[A[n, d - n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Jan 21 2017, after Alois P. Heinz *)

Formula

E.g.f. of column k: exp(Sum_{d|k, d>1} x^d/d).

A074759 Number of degree-n permutations of order dividing n. Number of solutions to x^n = 1 in S_n.

Original entry on oeis.org

1, 1, 2, 3, 16, 25, 396, 721, 11264, 46089, 602200, 3628801, 133494912, 479001601, 7692266960, 95904273375, 1914926104576, 20922789888001, 628693317946656, 6402373705728001, 182635841123840000, 2496321046987530021, 55826951075231672512, 1124000727777607680001
Offset: 0

Views

Author

Vladeta Jovovic, Sep 28 2002

Keywords

Crossrefs

Main diagonal of A008307.

Programs

  • Maple
    A:= proc(n,k) option remember; `if`(n<0, 0, `if`(n=0, 1,
           add(mul(n-i, i=1..j-1)*A(n-j,k), j=numtheory[divisors](k))))
        end:
    a:= n-> A(n, n):
    seq(a(n), n=0..25);  # Alois P. Heinz, Feb 14 2013
  • Mathematica
    Table[a = Sum[x^i/i, {i, Divisors[n]}]; Part[Range[0, 20]! CoefficientList[Series[Exp[a], {x, 0, 20}], x],n + 1], {n, 0, 20}]  (* Geoffrey Critzer, Dec 04 2011 *)

Formula

a(n) = n! * [x^n] exp(Sum_{k divides n} x^k/k).
a(n) = Sum_{d|n} A057731(n,d) for n >= 1. - Alois P. Heinz, Jul 05 2021

A343576 Number of permutations of [n] without fixed points and all cycles equal length.

Original entry on oeis.org

1, 0, 1, 2, 9, 24, 175, 720, 6405, 42560, 436401, 3628800, 48073795, 479001600, 7116730335, 88966701824, 1474541093025, 20922789888000, 400160588853025, 6402373705728000, 133991603578884051, 2457732174030848000, 55735573291977790575, 1124000727777607680000
Offset: 0

Views

Author

Gary Yane, Apr 20 2021

Keywords

Examples

			a(4) = 9: (1,2)(3,4), (1,3)(2,4), (1,4)(2,3), (2,3,4,1), (2,4,1,3), (3,1,4,2), (3,4,2,1), (4,1,2,3), (4,3,1,2).
		

Crossrefs

Programs

  • Maple
    a:= n-> `if`(n=0, 1, add(n!/d!*(d/n)^d, d=numtheory[divisors](n) minus {n})):
    seq(a(n), n=0..23);  # Alois P. Heinz, Apr 20 2021
  • PARI
    a(n) = if (n, sumdiv(n, d, if (dMichel Marcus, Apr 21 2021

Formula

a(n) = Sum_{d|n, d0, a(0) = 1.
a(n) = A261431(n) for n in { A000040, A001358 }.
Showing 1-3 of 3 results.