cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A261430 Number A(n,k) of permutations p of [n] without fixed points such that p^k = Id; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 2, 3, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 9, 0, 15, 0, 0, 1, 0, 0, 2, 0, 0, 40, 0, 0, 0, 1, 0, 1, 0, 3, 24, 105, 0, 105, 0, 0, 1, 0, 0, 0, 0, 20, 0, 0, 0, 0, 0, 0, 1, 0, 1, 2, 9, 0, 175, 0, 2625, 2240, 945, 0, 0
Offset: 0

Views

Author

Alois P. Heinz, Aug 18 2015

Keywords

Examples

			Square array A(n,k) begins:
  1, 1,   1,  1,    1,  1,    1,   1,    1, ...
  0, 0,   0,  0,    0,  0,    0,   0,    0, ...
  0, 0,   1,  0,    1,  0,    1,   0,    1, ...
  0, 0,   0,  2,    0,  0,    2,   0,    0, ...
  0, 0,   3,  0,    9,  0,    3,   0,    9, ...
  0, 0,   0,  0,    0, 24,   20,   0,    0, ...
  0, 0,  15, 40,  105,  0,  175,   0,  105, ...
  0, 0,   0,  0,    0,  0,  210, 720,    0, ...
  0, 0, 105,  0, 2625,  0, 4585,   0, 7665, ...
		

Crossrefs

Main diagonal gives A261431.
Cf. A008307.

Programs

  • Maple
    with(numtheory):
    A:= proc(n, k) option remember; `if`(n<0, 0, `if`(n=0, 1,
          add(mul(n-i, i=1..j-1)*A(n-j, k), j=divisors(k) minus {1})))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    A[0, 0] = A[0, 1] = 1; A[, 0|1] = 0; A[n, k_] := A[n, k] = If[n < 0, 0, If[n == 0, 1, Sum[Product[n - i, {i, 1, j - 1}]*A[n - j, k], {j, Rest @ Divisors[k]}]]]; Table[A[n, d - n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Jan 21 2017, after Alois P. Heinz *)

Formula

E.g.f. of column k: exp(Sum_{d|k, d>1} x^d/d).

A261317 Number of permutations sigma of [n] without fixed points such that sigma^6 = Id.

Original entry on oeis.org

1, 0, 1, 2, 3, 20, 175, 210, 4585, 24920, 101745, 1266650, 13562395, 48588540, 1082015935, 9135376250, 63098660625, 1069777108400, 13628391601825, 88520971388850, 2134604966569075, 23945393042070500, 236084869688242575, 4893567386193135650, 72576130763294383225
Offset: 0

Views

Author

Alois P. Heinz, Aug 14 2015

Keywords

Examples

			a(4) = 3: 2143, 3412, 4321.
a(5) = 20: 21453, 21534, 23154, 24513, 25431, 31254, 34152, 34521, 35124, 35412, 41523, 43251, 43512, 45132, 45213, 51432, 53214, 53421, 54123, 54231.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1,
           add(mul(n-i, i=1..j-1)*a(n-j), j=[2, 3, 6])))
        end:
    seq(a(n), n=0..30);
  • Mathematica
    a[n_] := a[n] = If[n < 0, 0, If[n == 0, 1, Sum[Product[n - i, {i, 1, j - 1}]*a[n - j], {j, {2, 3, 6}}]]];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 10 2018, from Maple *)

Formula

E.g.f.: exp(x^2*(x^4+2*x+3)/6).
D-finite with recurrence a(n) +(-n+1)*a(n-2) -(n-1)*(n-2)*a(n-3) -(n-5)*(n-1)*(n-2)*(n-3)*(n-4)*a(n-6)=0. - R. J. Mathar, Jul 04 2023

A261381 Number of permutations sigma of [n] without fixed points such that sigma^10 = Id.

Original entry on oeis.org

1, 0, 1, 0, 3, 24, 15, 504, 105, 9072, 436401, 166320, 28750491, 3243240, 1307809503, 27965161224, 52309001745, 3795543015264, 2000776242465, 324424646818272, 17268536366932851, 22708075360010040, 3974396337125445231, 1436250980764880280, 548178165969608527353
Offset: 0

Views

Author

Alois P. Heinz, Aug 17 2015

Keywords

Examples

			a(4) = 3: 2143, 3412, 4321:
a(5) = 24: 23451, 23514, 24153, 24531, 25134, 25413, 31452, 31524, 34251, 34512, 35214, 35421, 41253, 41532, 43152, 43521, 45123, 45231, 51234, 51423, 53124, 53412, 54132, 54213.
a(6) = 15: 214365, 215634, 216543, 341265, 351624, 361542, 432165, 456123, 465132, 532614, 546213, 564312, 632541, 645231, 654321.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1,
           add(mul(n-i, i=1..j-1)*a(n-j), j=[2, 5, 10])))
        end:
    seq(a(n), n=0..30);

Formula

E.g.f.: exp(x^2/2+x^5/5+x^10/10).
Showing 1-3 of 3 results.