cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A056220 a(n) = 2*n^2 - 1.

Original entry on oeis.org

-1, 1, 7, 17, 31, 49, 71, 97, 127, 161, 199, 241, 287, 337, 391, 449, 511, 577, 647, 721, 799, 881, 967, 1057, 1151, 1249, 1351, 1457, 1567, 1681, 1799, 1921, 2047, 2177, 2311, 2449, 2591, 2737, 2887, 3041, 3199, 3361, 3527, 3697, 3871, 4049, 4231, 4417, 4607, 4801
Offset: 0

Views

Author

N. J. A. Sloane, Aug 06 2000

Keywords

Comments

Image of squares (A000290) under "little Hankel" transform that sends [c_0, c_1, ...] to [d_0, d_1, ...] where d_n = c_n^2 - c_{n+1}*c_{n-1}. - Henry Bottomley, Dec 12 2000
Surround numbers of an n X n square. - Jason Earls, Apr 16 2001
Numbers n such that 2*n + 2 is a perfect square. - Cino Hilliard, Dec 18 2003, Juri-Stepan Gerasimov, Apr 09 2016
The sums of the consecutive integer sequences 2n^2 to 2(n+1)^2-1 are cubes, as 2n^2 + ... + 2(n+1)^2-1 = (1/2)(2(n+1)^2 - 1 - 2n^2 + 1)(2(n+1)^2 - 1 + 2n^2) = (2n+1)^3. E.g., 2+3+4+5+6+7 = 27 = 3^3, then 8+9+10+...+17 = 125 = 5^3. - Andras Erszegi (erszegi.andras(AT)chello.hu), Apr 29 2005
X values (other than 0) of solutions to the equation 2*X^3 + 2*X^2 = Y^2. To find Y values: b(n) = 2n*(2*n^2 - 1). - Mohamed Bouhamida, Nov 06 2007
Average of the squares of two consecutive terms is also a square. In fact: (2*n^2 - 1)^2 + (2*(n+1)^2 - 1)^2 = 2*(2*n^2 + 2*n + 1)^2. - Matias Saucedo (solomatias(AT)yahoo.com.ar), Aug 18 2008
Equals row sums of triangle A143593 and binomial transform of [1, 6, 4, 0, 0, 0, ...] with n > 1. - Gary W. Adamson, Aug 26 2008
Start a spiral of square tiles. Trivially the first tile fits in a 1 X 1 square. 7 tiles fit in a 3 X 3 square, 17 tiles fit in a 5 X 5 square and so on. - Juhani Heino, Dec 13 2009
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=-2, A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n >= 1, a(n) = coeff(charpoly(A,x),x^(n-2)). - Milan Janjic, Jan 26 2010
For each n > 0, the recursive series, formula S(b) = 6*S(b-1) - S(b-2) - 2*a(n) with S(0) = 4n^2-4n+1 and S(1) = 2n^2, has the property that every even term is a perfect square and every odd term is twice a perfect square. - Kenneth J Ramsey, Jul 18 2010
Fourth diagonal of A154685 for n > 2. - Vincenzo Librandi, Aug 07 2010
First integer of (2*n)^2 consecutive integers, where the last integer is 3 times the first + 1. As example, n = 2: term = 7; (2*n)^2 = 16; 7, 8, 9, ..., 20, 21, 22: 7*3 + 1 = 22. - Denis Borris, Nov 18 2012
Chebyshev polynomial of the first kind T(2,n). - Vincenzo Librandi, May 30 2014
For n > 0, number of possible positions of a 1 X 2 rectangle in a (n+1) X (n+2) rectangular integer lattice. - Andres Cicuttin, Apr 07 2016
This sequence also represents the best solution for Ripà's n_1 X n_2 X n_3 dots problem, for any 0 < n_1 = n_2 < n_3 = floor((3/2)*(n_1 - 1)) + 1. - Marco Ripà, Jul 23 2018

Examples

			a(0) = 0^2-1*1 = -1, a(1) = 1^2 - 4*0 = 1, a(2) = 2^2 - 9*1 = 7, etc.
a(4) = 31 = (1, 3, 3, 1) dot (1, 6, 4, 0) = (1 + 18 + 12 + 0). - _Gary W. Adamson_, Aug 29 2008
		

Crossrefs

Cf. A066049 (indices of prime terms)
Column 2 of array A188644 (starting at offset 1).

Programs

Formula

G.f.: (-1 + 4*x + x^2)/(1-x)^3. - Henry Bottomley, Dec 12 2000
a(n) = A119258(n+1,2) for n > 0. - Reinhard Zumkeller, May 11 2006
From Doug Bell, Mar 08 2009: (Start)
a(0) = -1,
a(n) = sqrt(A001844(n)^2 - A069074(n-1)),
a(n+1) = sqrt(A001844(n)^2 + A069074(n-1)) = sqrt(a(n)^2 + A069074(n-1)*2). (End)
a(n) + a(n+1) + 1 = (2n+1)^2. - Doug Bell, Mar 09 2009
a(n) = a(n-1) + 4*n - 2 (with a(0)=-1). - Vincenzo Librandi, Dec 25 2010
a(n) = A188653(2*n) for n > 0. - Reinhard Zumkeller, Apr 13 2011
a(n) = A162610(2*n-1,n) for n > 0. - Reinhard Zumkeller, Jan 19 2013
a(n) = ( Sum_{k=0..2} (C(n+k,3)-C(n+k-1,3))*(C(n+k,3)+C(n+k+1,3)) ) - (C(n+2,3)-C(n-1,3))*(C(n,3)+C(n+3,3)), for n > 3. - J. M. Bergot, Jun 16 2014
a(n) = j^2 + k^2 - 2 or 2*j*k if n >= 2 and j = n + sqrt(2)/2 and k = n - sqrt(2)/2. - Avi Friedlich, Mar 30 2015
a(n) = A002593(n)/n^2. - Bruce J. Nicholson, Apr 03 2017
a(n) = A000384(n) + n - 1. - Bruce J. Nicholson, Nov 12 2017
a(n)*a(n+k) + 2k^2 = m^2 (a perfect square), m = a(n) + (2n*k), for n>=1. - Ezhilarasu Velayutham, May 13 2019
From Amiram Eldar, Aug 10 2020: (Start)
Sum_{n>=1} 1/a(n) = 1/2 - sqrt(2)*Pi*cot(Pi/sqrt(2))/4.
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(2)*Pi*csc(Pi/sqrt(2))/4 - 1/2. (End)
From Amiram Eldar, Feb 04 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = (Pi/sqrt(2))*csc(Pi/sqrt(2)).
Product_{n>=2} (1 - 1/a(n)) = (Pi/(4*sqrt(2)))*csc(Pi/sqrt(2)). (End)
a(n) = A003215(n) - A000217(n-2)*2. - Leo Tavares, Jun 29 2021
Let T(n) = n*(n+1)/2. Then a(n)^2 = T(2n-2)*T(2n+1) + n^2. - Charlie Marion, Feb 12 2023
E.g.f.: exp(x)*(2*x^2 + 2*x - 1). - Stefano Spezia, Jul 08 2023

A016755 Odd cubes: a(n) = (2*n + 1)^3.

Original entry on oeis.org

1, 27, 125, 343, 729, 1331, 2197, 3375, 4913, 6859, 9261, 12167, 15625, 19683, 24389, 29791, 35937, 42875, 50653, 59319, 68921, 79507, 91125, 103823, 117649, 132651, 148877, 166375, 185193, 205379, 226981, 250047, 274625, 300763, 328509, 357911, 389017, 421875
Offset: 0

Views

Author

Keywords

Comments

Partial sums of A010014. - Jani Melik, May 20 2013
Terms end in the repeating sequence 1, 7, 5, 3, 9, ... - Melvin Peralta, Jul 08 2015

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.6.3.

Crossrefs

Programs

Formula

Sum_{n >= 0} 1/a(n) = 7 * zeta(3) / 8.
G.f.: (1+23*x+23*x^2+x^3)/(1-4*x+6*x^2-4*x^3+x^4). - Colin Barker, Jan 02 2012
a(n) = A000578(A005408(n)). - Michel Marcus, Jul 09 2015
E.g.f.: exp(x)*(1 + 26*x + 36*x^2 + 8*x^3). See A154537, row n=3. - Wolfdieter Lang, Mar 12 2017
From Bruce J. Nicholson, Dec 08 2019: (Start)
a(n) = 24 * A000330(n) + A005408(n).
a(n) = 2 * A005917(n+1) - A005408(n). (End)
Sum_{n>=0} (-1)^n/a(n) = Pi^3/32 (A153071). - Amiram Eldar, Oct 10 2020
Product_{n>=1} (1 - (-1)^n/a(n)) = (Pi/12)*(1 + sqrt(2)*cosh(sqrt(3)*Pi/4)) (Chamberland and Straub, 2013). - Amiram Eldar, Jan 26 2024

A007204 Crystal ball sequence for D_4 lattice.

Original entry on oeis.org

1, 25, 169, 625, 1681, 3721, 7225, 12769, 21025, 32761, 48841, 70225, 97969, 133225, 177241, 231361, 297025, 375769, 469225, 579121, 707281, 855625, 1026169, 1221025, 1442401, 1692601, 1974025, 2289169, 2640625, 3031081, 3463321, 3940225, 4464769, 5040025
Offset: 0

Views

Author

N. J. A. Sloane and J. H. Conway, Apr 28 1994

Keywords

Comments

Equals binomial transform of [1, 24, 120, 192, 96, 0, 0, 0, ...]. - Gary W. Adamson, Aug 13 2009
Hypotenuse of Pythagorean triangles with hypotenuse a square: A057769(n)^2 + A069074(n-1)^2 = a(n)^2. - Martin Renner, Nov 12 2011
Numbers n such that n*x^4 + x^2 + 1 is reducible. - Arkadiusz Wesolowski, Nov 04 2013

References

  • Albert H. Beiler, Recreations in the theory of numbers, New York: Dover, (2nd ed.) 1966, p. 106, table 53.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [(2*n^2+2*n+1)^2: n in [0..40]]; // Vincenzo Librandi, Nov 18 2016
    
  • Maple
    A007204:=n->(2*n^2+2*n+1)^2; seq(A007204(n), n=0..30);
  • Mathematica
    Table[(2n^2+2n+1)^2,{n,0,30}] (* or *) LinearRecurrence[{5,-10,10,-5,1},{1,25,169,625,1681},40] (* Harvey P. Dale, Mar 03 2013 *)
  • PARI
    a(n)=(2*n^2+2*n+1)^2 \\ Charles R Greathouse IV, Feb 08 2017

Formula

G.f.: (1 + 54*x^2 + 20*x + 20*x^3 + x^4)/(1-x)^5.
a(0)=1, a(1)=25, a(2)=169, a(3)=625, a(4)=1681, a(n)=5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Harvey P. Dale, Mar 03 2013
Sum_{n>=0} 1/a(n) = Pi*(sinh(Pi) - Pi)/(2*(cosh(Pi) + 1)) = 1.0487582722070177... - Ilya Gutkovskiy, Nov 18 2016
a(n) = A016754(n) + A060300(n). - Bruce J. Nicholson, Apr 14 2017
a(n) = A001844(n)^2 = (2*n^2+2*n+1)^2. - Bruce J. Nicholson, May 15 2017
a(n) = A000583(n+1) + A099761(n) + 2*A005563(n-1)*A000290(n). - Charlie Marion, Jan 14 2021
E.g.f.: exp(x)*(1 + 24*x + 60*x^2 + 32*x^3 + 4*x^4). - Stefano Spezia, Jun 06 2021

Extensions

More terms from Harvey P. Dale, Mar 03 2013

A057769 a(n) = 4*n^4 + 8*n^3 - 4*n - 1 = (2*n^2 - 1)*(2*n^2 + 4*n + 1).

Original entry on oeis.org

-1, 7, 119, 527, 1519, 3479, 6887, 12319, 20447, 32039, 47959, 69167, 96719, 131767, 175559, 229439, 294847, 373319, 466487, 576079, 703919, 851927, 1022119, 1216607, 1437599, 1687399, 1968407, 2283119, 2634127, 3024119, 3455879, 3932287, 4456319, 5031047, 5659639, 6345359, 7091567
Offset: 0

Views

Author

Stuart M. Ellerstein (ellerstein(AT)aol.com), Nov 01 2000

Keywords

Comments

It may be seen that the terms of the (signed) sequence consist of a subset of the odd squares minus two.
One leg of Pythagorean triangles with hypotenuse a square: a(n)^2 + A069074(n-1)^2 = A007204(n)^2. - Martin Renner, Nov 12 2011

References

  • Albert H. Beiler, Recreations in the theory of numbers, New York: Dover, 2nd ed., 1966, p. 106, table 53.

Crossrefs

Programs

Formula

a(n) = 4*b(n)^2 - 4*b(n) - 1 where b(n) = A002378(n).
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5); a(0)=-1, a(1)=7, a(2)=119, a(3)=527, a(4)=1519. - Harvey P. Dale, Oct 20 2011
G.f.: (x*(x*((x-12)*x-74)-12)+1)/(x-1)^5. - Harvey P. Dale, Oct 20 2011
Sum_{n>=0} 1/a(n) = cot(Pi/sqrt(2))*Pi/(2*sqrt(2)). - Amiram Eldar, Jan 22 2024
E.g.f.: exp(x)*(-1 + 8*x + 52*x^2 + 32*x^3 + 4*x^4). - Stefano Spezia, Apr 27 2025

Extensions

More terms from James Sellers, Nov 02 2000

A181773 Molecular topological indices of the cocktail party graphs.

Original entry on oeis.org

0, 48, 240, 672, 1440, 2640, 4368, 6720, 9792, 13680, 18480, 24288, 31200, 39312, 48720, 59520, 71808, 85680, 101232, 118560, 137760, 158928, 182160, 207552, 235200, 265200, 297648, 332640, 370272, 410640
Offset: 1

Views

Author

Eric W. Weisstein, Jul 10 2011

Keywords

Comments

a(n) is the number of 2 X 2 matrices (all four elements distinct) having entries in {-n,...,0,...,n} with determinant equal to the permanent. - Indranil Ghosh, Dec 25 2016

Crossrefs

Cf. A280059 (2 X 2 matrices, elements can be repeated).

Programs

Formula

a(n) = 8*(n-1)*n*(2n-1).
a(n) = 16*A059270(n-1).
G.f.: 48*x^2*(x+1)/(x-1)^4. - Colin Barker, Oct 17 2012
a(n) = 48*A000330(n-1). - R. J. Mathar, Jan 04 2017
From Omar E. Pol, Jan 05 2017: (Start)
a(n) = 24*A006331(n-1) = 12*A002492(n-1) = 8*A055112(n-1).
a(n) = 2*A069074(n-2), n >= 2. (End)
Showing 1-5 of 5 results.