cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A002817 Doubly triangular numbers: a(n) = n*(n+1)*(n^2+n+2)/8.

Original entry on oeis.org

0, 1, 6, 21, 55, 120, 231, 406, 666, 1035, 1540, 2211, 3081, 4186, 5565, 7260, 9316, 11781, 14706, 18145, 22155, 26796, 32131, 38226, 45150, 52975, 61776, 71631, 82621, 94830, 108345, 123256, 139656, 157641, 177310, 198765, 222111, 247456, 274911, 304590
Offset: 0

Views

Author

Keywords

Comments

Number of inequivalent ways to color vertices of a square using <= n colors, allowing rotations and reflections. Group is dihedral group D_8 of order 8 with cycle index (1/8)*(x1^4 + 2*x4 + 3*x2^2 + 2*x1^2*x2); setting all x_i = n gives the formula a(n) = (1/8)*(n^4 + 2*n + 3*n^2 + 2*n^3).
Number of semi-magic 3 X 3 squares with a line sum of n-1. That is, 3 X 3 matrices of nonnegative integers such that row sums and column sums are all equal to n-1. - [Gupta, 1968, page 653; Bell, 1970, page 279]. - Peter Bertok (peter(AT)bertok.com), Jan 12 2002. See A005045 for another version.
Also the coefficient h_2 of x^{n-3} in the shelling polynomial h(x)=h_0*x^n-1 + h_1*x^n-2 + h_2*x^n-3 + ... + h_n-1 for the independence complex of the cycle matroid of the complete graph K_n on n vertices (n>=2) - Woong Kook (andrewk(AT)math.uri.edu), Nov 01 2006
If X is an n-set and Y a fixed 3-subset of X then a(n-4) is equal to the number of 5-subsets of X intersecting Y. - Milan Janjic, Jul 30 2007
Starting with offset 1 = binomial transform of [1, 5, 10, 9, 3, 0, 0, 0, ...]. - Gary W. Adamson, Aug 05 2009
Starting with "1" = row sums of triangle A178238. - Gary W. Adamson, May 23 2010
The equation n*(n+1)*(n^2 + n + 2)/8 may be arrived at by solving for x in the following equality: (n^2+n)/2 = (sqrt(8x+1)-1)/2. - William A. Tedeschi, Aug 18 2010
Partial sums of A006003. - Jeremy Gardiner, Jun 23 2013
Doubly triangular numbers are revealed in the sums of row sums of Floyd's triangle.
1, 1+5, 1+5+15, ...
1
2 3
4 5 6
7 8 9 10
11 12 13 14 15
- Tony Foster III, Nov 14 2015
From Jaroslav Krizek, Mar 04 2017: (Start)
For n>=1; a(n) = sum of the different sums of elements of all the nonempty subsets of the sets of numbers from 1 to n.
Example: for n = 6; nonempty subsets of the set of numbers from 1 to 3: {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}; sums of elements of these subsets: 1, 2, 3, 3, 4, 5, 6; different sums of elements of these subsets: 1, 2, 3, 4, 5, 6; a(3) = (1+2+3+4+5+6) = 21, ... (End)
a(n) is also the number of 4-cycles in the (n+4)-path complement graph. - Eric W. Weisstein, Apr 11 2018

Examples

			G.f. = x + 6*x^2 + 21*x^3 + 55*x^4 + 120*x^5 + 231*x^6 + 406*x^7 + 666*x^8 + ...
		

References

  • A. Björner, The homology and shellability of matroids and geometric lattices, in Matroid Applications (ed. N. White), Encyclopedia of Mathematics and Its Applications, 40, Cambridge Univ. Press 1992.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 124, #25, Q(3,r).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics I, p. 292.

Crossrefs

Cf. A006003 (first differences), A165211 (mod 2).
Multiple triangular: A000217, A064322, A066370.
Cf. A006528 (square colorings).
Cf. A236770 (see crossrefs).
Row n=3 of A257493 and row n=2 of A331436 and A343097.
Cf. A000332.
Cf. A000292 (3-cycle count of \bar P_{n+4}), A060446 (5-cycle count of \bar P_{n+3}), A302695 (6-cycle count of \bar P_{n+5}).

Programs

  • Maple
    A002817 := n->n*(n+1)*(n^2+n+2)/8;
  • Mathematica
    a[ n_] := n (n + 1) (n^2 + n + 2) / 8; (* Michael Somos, Jul 24 2002 *)
    LinearRecurrence[{5,-10,10,-5,1}, {0,1,6,21,55},40] (* Harvey P. Dale, Jul 18 2011 *)
    nn=50;Join[{0},With[{c=(n(n+1))/2},Flatten[Table[Take[Accumulate[Range[ (nn(nn+1))/2]], {c,c}],{n,nn}]]]] (* Harvey P. Dale, Mar 19 2013 *)
  • PARI
    {a(n) = n * (n+1) * (n^2 + n + 2) / 8}; /* Michael Somos, Jul 24 2002 */
    
  • PARI
    concat(0, Vec(x*(1+x+x^2)/(1-x)^5 + O(x^50))) \\ Altug Alkan, Nov 15 2015
    
  • Python
    def A002817(n): return (m:=n*(n+1))*(m+2)>>3 # Chai Wah Wu, Aug 30 2024

Formula

a(n) = 3*binomial(n+2, 4) + binomial(n+1, 2).
G.f.: x*(1 + x + x^2)/(1-x)^5. - Simon Plouffe (in his 1992 dissertation); edited by N. J. A. Sloane, May 13 2008
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) + 3. - Warut Roonguthai, Dec 13 1999
a(n) = 5a(n-1) - 10a(n-2) + 10a(n-3) - 5a(n-4) + a(n-5) = A000217(A000217(n)). - Ant King, Nov 18 2010
a(n) = Sum(Sum(1 + Sum(3*n))). - Xavier Acloque, Jan 21 2003
a(n) = A000332(n+1) + A000332(n+2) + A000332(n+3), with A000332(n) = binomial(n, 4). - Mitch Harris, Oct 17 2006 and Bruce J. Nicholson, Oct 22 2017
a(n) = Sum_{i=1..C(n,2)} i = C(C(n,2) + 1, 2) = A000217(A000217(n+1)). - Enrique Pérez Herrero, Jun 11 2012
Euler transform of length 3 sequence [6, 0, -1]. - Michael Somos, Nov 19 2015
E.g.f.: x*(8 + 16*x + 8*x^2 + x^3)*exp(x)/8. - Ilya Gutkovskiy, Apr 26 2016
Sum_{n>=1} 1/a(n) = 6 - 4*Pi*tanh(sqrt(7)*Pi/2)/sqrt(7) = 1.25269064911978447... . - Vaclav Kotesovec, Apr 27 2016
a(n) = A000217(n)*A000124(n)/2.
a(n) = ((n-1)^4 + 3*(n-1)^3 + 2*(n-1)^2 + 2*n))/8. - Bruce J. Nicholson, Apr 05 2017
a(n) = (A016754(n)+ A007204(n)- 2) / 32. - Bruce J. Nicholson, Apr 14 2017
a(n) = a(-1-n) for all n in Z. - Michael Somos, Apr 17 2017
a(n) = T(T(n)) where T are the triangular numbers A000217. - Albert Renshaw, Jan 05 2020
a(n) = 2*n^2 - n + 6*binomial(n, 3) + 3*binomial(n, 4). - Ryan Jean, Mar 20 2021
a(n) = (A008514(n) - 1)/16. - Charlie Marion, Dec 20 2024

Extensions

More terms from Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 29 1999

A108553 Square array, read by antidiagonals, where row n equals the crystal ball sequence for D_n lattice.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 5, 1, 1, 13, 13, 7, 1, 1, 25, 55, 25, 9, 1, 1, 41, 169, 147, 41, 11, 1, 1, 61, 411, 625, 309, 61, 13, 1, 1, 85, 853, 2051, 1681, 561, 85, 15, 1, 1, 113, 1583, 5577, 6981, 3721, 923, 113, 17, 1, 1, 145, 2705, 13203, 23673, 18733, 7225, 1415, 145, 19, 1
Offset: 0

Views

Author

Paul D. Hanna, Jun 10 2005

Keywords

Comments

Rows 0 and 2 are included by extension since they fit the formula. Row 1 equals the odd numbers in order that triangle A108556 maintains that A108556(n,n-1) = (n/2)*A108556(n,n) for all n>=1, where row n of triangle A108556 equals the inverse binomial transform of row n of this square array.

Examples

			Square array begins:
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,...
1,3,5,7,9,11,13,15,17,19,21,23,25,27,...
1,5,13,25,41,61,85,113,145,181,221,265,...
1,13,55,147,309,561,923,1415,2057,2869,...
1,25,169,625,1681,3721,7225,12769,21025,...
1,41,411,2051,6981,18733,42783,86983,...
1,61,853,5577,23673,76389,204205,476113,...
1,85,1583,13203,68853,264825,824083,...
Inverse binomial transform of rows gives
rows of triangle A108556:
1,
1,2,
1,4,4,
1,12,30,20,
1,24,120,192,96,
1,40,330,940,1080,432, ...
Product of the g.f. of row n and (1-x)^(n+1)
generates the symmetric triangle A108558:
1;
1,1;
1,2,1;
1,9,9,1;
1,20,54,20,1;
1,35,180,180,35,1; ...
The row sums of triangle A108558 equals the
main diagonal of triangle A108556.
		

Crossrefs

Cf. A108554 (diagonal), A108555 (antidiagonal sums), A108556, A108558, A001844 (row 2), A005902 (row 3), A007204 (row 4), A008356 (row 5), A008358 (row 6), A008360 (row 7), A008362 (row 8), A008377 (row 9), A008379 (row 10).

Programs

  • PARI
    T(n,k)=if(n<0 || k<0,0,if(n==0 || k==0,1,if(n==1,2*k+1, sum(j=0,k,binomial(n+k-j,k-j)*(binomial(2*n,2*j)-2*n*binomial(n-2,j-1))))))

Formula

T(n, k) = Sum_{j=0..n} C(n+k-j, k-j)*[C(2*n, 2*j) - 2*j*(n-j)*C(n, j)/(n-1)] for n>1, with T(0, k)=1, T(1, k)=2*k+1.

A108558 Symmetric triangle, read by rows, where row n equals the (n+1)-th differences of the crystal ball sequence for D_n lattice, for n>=0.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 9, 9, 1, 1, 20, 54, 20, 1, 1, 35, 180, 180, 35, 1, 1, 54, 447, 852, 447, 54, 1, 1, 77, 931, 2863, 2863, 931, 77, 1, 1, 104, 1724, 7768, 12550, 7768, 1724, 104, 1, 1, 135, 2934, 18186, 43128, 43128, 18186, 2934, 135, 1, 1, 170, 4685, 38200, 124850, 183356, 124850, 38200, 4685, 170, 1
Offset: 0

Views

Author

Paul D. Hanna, Jun 10 2005

Keywords

Comments

Row n equals the (n+1)-th differences of row n of the square array A108553. G.f. of row n equals: (1-x)^(n+1)*CBD_n(x), where CBD_n denotes the g.f. of the crystal ball sequence for D_n lattice.
From Peter Bala, Oct 23 2008: (Start)
Let D_n be the root lattice generated as a monoid by {+-e_i +- e_j: 1 <= i not equal to j <= n}. Let P(D_n) be the polytope formed by the convex hull of this generating set. Then the rows of this array are the h-vectors of a unimodular triangulation of P(D_n) [Ardila et al.]. See A108556 for the corresponding array of f-vectors for these type D_n polytopes. See A008459 for the array of h-vectors for type A_n polytopes and A086645 for the array of h-vectors associated with type C_n polytopes.
The Hilbert transform of this array (as defined in A145905) equals A108553.
(End)

Examples

			G.f.s of initial rows of square array A108553 are:
  (1)/(1-x),
  (1 + x)/(1-x)^2,
  (1 + 2*x + x^2)/(1-x)^3,
  (1 + 9*x + 9*x^2 + x^3)/(1-x)^4,
  (1 + 20*x + 54*x^2 + 20*x^3 + x^4)/(1-x)^5,
  (1 + 35*x + 180*x^2 + 180*x^3 + 35*x^4 + x^5)/(1-x)^6.
Triangle begins:
  1;
  1,   1;
  1,   2,    1;
  1,   9,    9,     1;
  1,  20,   54,    20,      1;
  1,  35,  180,   180,     35,      1;
  1,  54,  447,   852,    447,     54,      1;
  1,  77,  931,  2863,   2863,    931,     77,     1;
  1, 104, 1724,  7768,  12550,   7768,   1724,   104,    1;
  1, 135, 2934, 18186,  43128,  43128,  18186,  2934,  135,   1;
  1, 170, 4685, 38200, 124850, 183356, 124850, 38200, 4685, 170, 1;
  ...
		

Crossrefs

Cf. A108553, A008353, A108558, A008459, A086645, A108556. Row n equals (n+1)-th differences of: A001844 (row 2), A005902 (row 3), A007204 (row 4), A008356 (row 5), A008358 (row 6), A008360 (row 7), A008362 (row 8), A008377 (row 9), A008379 (row 10).
T(2n,n) gives A305693.

Programs

  • Mathematica
    T[1, 0] = T[1, 1]=1; T[n_, k_] := Binomial[2n, 2k] - 2n Binomial[n-2, k-1];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 25 2018 *)
  • PARI
    T(n,k)=if(n
    				

Formula

T(n, k) = C(2*n, 2*k) - 2*n*C(n-2, k-1) for n>1, with T(0, 0)=1, T(1, 0)=T(1, 1)=1. Row sums equal A008353: 2^(n-1)*(2^n-n) for n>1.
From Peter Bala, Oct 23 2008: (Start)
O.g.f. : rational function N(x,z)/D(x,z), where N(x,z) = 1 - 3*(1 + x)*z + (3 + 2*x + 3*x^2)*z^2 - (1 + x)*(1 - 8*x + x^2)z^3 - 8*x*(1 + x^2)*z^4 + 2*x*(1 + x)*(1 - x)^2*z^5 and D(x,z) = ((1 - z)^2 - 2*x*z*(1 + z) + x^2*z^2)*(1 - z*(1 + x))^2.
For n >= 2, the row n generating polynomial equals 1/2*[(1 + sqrt(x))^(2n) + (1 - sqrt(x))^(2n)] - 2*n*x*(1 + x)^(n-2).
(End)

A069074 a(n) = (2*n+2)*(2*n+3)*(2*n+4) = 24*A000330(n+1).

Original entry on oeis.org

24, 120, 336, 720, 1320, 2184, 3360, 4896, 6840, 9240, 12144, 15600, 19656, 24360, 29760, 35904, 42840, 50616, 59280, 68880, 79464, 91080, 103776, 117600, 132600, 148824, 166320, 185136, 205320, 226920, 249984, 274560, 300696, 328440, 357840
Offset: 0

Views

Author

Benoit Cloitre, Apr 05 2002

Keywords

Comments

sqrt((Sum_{k=0..n} 2*a(k)) + 1) = A056220(n+2). - Doug Bell, Mar 09 2009
Second leg of Pythagorean triangles with hypotenuse a square: A057769(n)^2 + a(n-1)^2 = A007204(n)^2. - Martin Renner, Nov 12 2011
Numbers which are both the sum of 2*n + 4 consecutive odd integers and the sum of the 2*n + 2 immediately higher consecutive odd integers. In general, let f(k,n) = 3*k^3*A000330(n). Then f(k,n) is both the sum of k*n + k consecutive terms from the arithmetic progression with first term A000217(k) and constant difference k and the immediately higher k*n terms from the same progression. When k = 1, f(k,n) = A059270(n). - Charlie Marion, Aug 23 2021

References

  • Albert H. Beiler, Recreations in the theory of numbers, New York: Dover, (2nd ed.) 1966, p. 106, table 53.
  • T. J. I'a. Bromwich, Introduction to the Theory of Infinite Series, Macmillan, 2nd. ed. 1949, p. 190.
  • Jolley, Summation of Series, Dover (1961).
  • Konrad Knopp, Theory and application of infinite series, Dover, p. 269

Crossrefs

Cf. A001844. A001844(n+1)^2 - a(n) and A001844(n+1)^2 + a(n) are both square numbers. - Doug Bell, Mar 08 2009
Cf. A000466. a(n) = Sum_{k=0..2n+3} (A000466(n+1) + 2k) which is the sum of 2n+4 consecutive odd integers starting at A000466(n+1). - Doug Bell, Mar 08 2009

Programs

Formula

Sum_{n>=0} (-1)^n/a(n) = (Pi-3)/4 = 0.03539816339... [Jolley, eq. 244]
Sum_{n>=0} 1/a(n) = 3/4 - log(2) = 0.05685281... [Jolley, eq. 249]
G.f.: ( 24+24*x ) / (x-1)^4. - R. J. Mathar, Oct 03 2011

A057769 a(n) = 4*n^4 + 8*n^3 - 4*n - 1 = (2*n^2 - 1)*(2*n^2 + 4*n + 1).

Original entry on oeis.org

-1, 7, 119, 527, 1519, 3479, 6887, 12319, 20447, 32039, 47959, 69167, 96719, 131767, 175559, 229439, 294847, 373319, 466487, 576079, 703919, 851927, 1022119, 1216607, 1437599, 1687399, 1968407, 2283119, 2634127, 3024119, 3455879, 3932287, 4456319, 5031047, 5659639, 6345359, 7091567
Offset: 0

Views

Author

Stuart M. Ellerstein (ellerstein(AT)aol.com), Nov 01 2000

Keywords

Comments

It may be seen that the terms of the (signed) sequence consist of a subset of the odd squares minus two.
One leg of Pythagorean triangles with hypotenuse a square: a(n)^2 + A069074(n-1)^2 = A007204(n)^2. - Martin Renner, Nov 12 2011

References

  • Albert H. Beiler, Recreations in the theory of numbers, New York: Dover, 2nd ed., 1966, p. 106, table 53.

Crossrefs

Programs

Formula

a(n) = 4*b(n)^2 - 4*b(n) - 1 where b(n) = A002378(n).
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5); a(0)=-1, a(1)=7, a(2)=119, a(3)=527, a(4)=1519. - Harvey P. Dale, Oct 20 2011
G.f.: (x*(x*((x-12)*x-74)-12)+1)/(x-1)^5. - Harvey P. Dale, Oct 20 2011
Sum_{n>=0} 1/a(n) = cot(Pi/sqrt(2))*Pi/(2*sqrt(2)). - Amiram Eldar, Jan 22 2024
E.g.f.: exp(x)*(-1 + 8*x + 52*x^2 + 32*x^3 + 4*x^4). - Stefano Spezia, Apr 27 2025

Extensions

More terms from James Sellers, Nov 02 2000

A108556 Triangle, read by rows, where row n equals the inverse binomial transform of the crystal ball sequence for D_n lattice.

Original entry on oeis.org

1, 1, 2, 1, 4, 4, 1, 12, 30, 20, 1, 24, 120, 192, 96, 1, 40, 330, 940, 1080, 432, 1, 60, 732, 3200, 6240, 5568, 1856, 1, 84, 1414, 8708, 25200, 37184, 27104, 7744, 1, 112, 2480, 20352, 80960, 173824, 206080, 126976, 31744, 1, 144, 4050, 42588, 221544, 643824, 1096032, 1085760, 579456, 128768
Offset: 0

Views

Author

Paul D. Hanna, Jun 10 2005

Keywords

Comments

Row n equals the inverse binomial transform of row n of the square array A108553.
Array of f-vectors for type D root polytopes [Ardila et al.]. See A063007 and A127674 for the arrays of f-vectors for type A and type C root polytopes respectively. - Peter Bala, Oct 23 2008

Examples

			Triangle begins:
1;
1,2;
1,4,4;
1,12,30,20;
1,24,120,192,96;
1,40,330,940,1080,432;
1,60,732,3200,6240,5568,1856;
1,84,1414,8708,25200,37184,27104,7744;
1,112,2480,20352,80960,173824,206080,126976,31744; ...
		

Crossrefs

Cf. A108553, A108557 (row sums), A108558, Rows are inverse binomial transforms of: A001844 (row 2), A005902 (row 3), A007204 (row 4), A008356 (row 5), A008358 (row 6), A008360 (row 7), A008362 (row 8), A008377 (row 9), A008379 (row 10).

Programs

  • Mathematica
    T[n_, k_] := Module[{A}, A = Table[Table[If[r - 1 == 0 || c - 1 == 0, 1, If[r - 1 == 1, 2c - 1, Sum[Binomial[r + c - j - 2, c - j - 1] (Binomial[2r - 2, 2j] - 2(r - 1) Binomial[r - 3, j - 1]), {j, 0, c - 1}]]], {c, 1, n + 1}], {r, 1, n + 1}]; SeriesCoefficient[((A[[n + 1]]. x^Range[0, n]) /. x -> x/(1 + x))/(1 + x), {x, 0, k}]];
    Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 26 2018, from PARI *)
  • PARI
    T(n,k)=local(A=vector(n+1,r,vector(n+1,c,if(r-1==0 || c-1==0,1,if(r-1==1,2*c-1, sum(j=0,c-1,binomial(r+c-j-2,c-j-1)*(binomial(2*r-2,2*j)-2*(r-1)*binomial(r-3,j-1)))))))); polcoeff(subst(Ser(A[n+1]),x,x/(1+x))/(1+x),k)

Formula

Main diagonal equals A008353: 2^(n-1)*(2^n-n) for n>1.
O.g.f. : rational function N(x,z)/D(x,z), where N(x,z) = 1 - 3*(1 + 2*x)*z + (3 + 8*x + 8*x^2)*z^2 - (1 + 2*x)*(1 - 6*x - 6*x^2)z^3 - 8*x*(1 + x)(1 + 2*x + 2*x^2)*z^4 + 2*x*(1 + x)*(1 + 2*x)*z^5 and D(x,z) = ((1-z)^2 - 4*x*z)*(1 - z*(1 + 2*x))^2. - Peter Bala, Oct 23 2008

A234334 Numbers k such that both distances from k to two nearest squares are perfect squares.

Original entry on oeis.org

0, 1, 5, 8, 25, 40, 45, 65, 80, 153, 160, 169, 200, 221, 325, 360, 416, 425, 493, 520, 625, 680, 725, 925, 936, 1025, 1040, 1073, 1088, 1305, 1360, 1681, 1768, 1800, 1813, 1845, 1961, 2000, 2320, 2385, 2501, 2600, 2925, 3016, 3185, 3200, 3400, 3445, 3721, 3848
Offset: 1

Views

Author

Alex Ratushnyak, Dec 23 2013

Keywords

Comments

Except a(1)=0, a(n) are numbers k such that both k-x and y-k are perfect squares, where x and y are two nearest to k squares: x < k <= y.
The sequence of sums of distances begins: 1, 1, 5, 5, 9, 13, 13, 17, 17, 25, 25, 25, 29, 29, 37, 37, 41, 41, 45, 45, 49, 53, 53, 61, 61, 65, 65, 65, 65, 73, 73, 81, 85, ... (cf. A057653).
Each term is either a square or has a pair: if i^2 + j^2 = 2*m+1 then m^2+i^2 and m^2+j^2 are both in the sequence.

Examples

			The two squares nearest to 25 are 16 and 25, because both 25-25=0 and 25-16=9 are squares, 25 is in the sequence.
The two squares nearest to 45 are 36 and 49, because both 45-36=9 and 49-45=4 are squares, 45 is in the sequence.
		

Crossrefs

Cf. A000290.
Cf. subsequences: A007204, A234335, A234336.
Cf. A234348.

Programs

  • Maple
    filter:= proc(n) local a;
      if issqr(n) then a:= sqrt(n)-1 else a:= floor(sqrt(n)) fi;
      issqr(n-a^2) and issqr((a+1)^2-n)
    end proc:
    select(filter, [$0..5000]); # Robert Israel, Jan 21 2021
  • Mathematica
    filter[n_] := If[n == 0, True, Module[{a}, a = If[IntegerQ @ Sqrt[n], Sqrt[n]-1, Floor[Sqrt[n]]]; IntegerQ @ Sqrt[n-a^2] && IntegerQ@Sqrt[(a+1)^2-n]]];
    Select[Range[0, 5000], filter] (* Jean-François Alcover, May 28 2023, after Robert Israel *)

A288486 Square rings obtained by adding four identical cuboids from A169938, a(n) = 4*n*(n+1)*(n*(n+1)+1).

Original entry on oeis.org

0, 24, 168, 624, 1680, 3720, 7224, 12768, 21024, 32760, 48840, 70224, 97968, 133224, 177240, 231360, 297024, 375768, 469224, 579120, 707280, 855624, 1026168, 1221024, 1442400, 1692600, 1974024, 2289168, 2640624, 3031080, 3463320, 3940224, 4464768, 5040024
Offset: 0

Views

Author

Daniel Poveda Parrilla, Jun 10 2017

Keywords

Comments

If we fill the empty space with A288487(n) cubes, we get a solid cuboid with (n+1)^5 cubes (A000584(n+1)).

Crossrefs

Programs

  • Mathematica
    Table[4 n (n + 1) (n^2 + n + 1), {n, 0, 28}] (* or *) CoefficientList[Series[24 (x + 2 x^2 + x^3)/(1 - x)^5, {x, 0, 28}], x] (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {0, 24, 168, 624, 1680}, 29]
  • PARI
    Vec(24*(x + 2*x^2 + x^3)/(1 - x)^5 + O(x^28))

Formula

G.f.: 24*(x + 2*x^2 + x^3) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
a(n) = A007204(n) - 1 = (A001844(n))^2 - 1.
a(n) = 4*A169938(n) = 4*A002378(n)*A002061(n+1) = A033996(n)*A002061(n+1).

A335648 Partial sums of A006010.

Original entry on oeis.org

0, 1, 6, 26, 78, 195, 420, 820, 1476, 2501, 4026, 6222, 9282, 13447, 18984, 26216, 35496, 47241, 61902, 80002, 102102, 128843, 160908, 199068, 244140, 297037, 358722, 430262, 512778, 607503, 715728, 838864, 978384, 1135889, 1313046, 1511658, 1733598, 1980883, 2255604
Offset: 0

Views

Author

Stefano Spezia, Jun 15 2020

Keywords

Crossrefs

Cf. A006010 (1st differences), A186424 (3rd differences), A317614 (2nd differences).

Programs

  • Magma
    I:=[0, 1, 6, 26, 78, 195, 420, 820]; [n le 8 select I[n] else 4*Self(n-1)-4*Self(n-2)-4*Self(n-3)+10*Self(n-4)-4*Self(n-5)-4*Self(n-6)+4*Self(n-7)-Self(n-8): n in [1..39]];
    
  • Mathematica
    Table[(1+n)(5-5(-1)^n+8n+12n^2+8n^3+2n^4)/80,{n,0,38}]
  • PARI
    a(n) = (1 + n)*(5 - 5*(-1)^n + 8*n + 12*n^2 + 8*n^3 + 2*n^4)/80;
    
  • Sage
    (x*(1+2*x+6*x^2+2*x^3+x^4)/((1-x)^6*(1+x)^2)).series(x, 39).coefficients(x, False)

Formula

a(n) = (1 + n)*(5 - 5*(-1)^n + 8*n + 12*n^2 + 8*n^3 + 2*n^4)/80.
O.g.f.: x*(1 + 2*x + 6*x^2 + 2*x^3 + x^4)/((1 - x)^6*(1 + x)^2).
E.g.f.: (cosh(x) - sinh(x))*(-5 + 5*x + (5 + 65*x + 180*x^2 + 130*x^3 + 30*x^4 + 2*x^5)*(cosh(2*x) + sinh(2*x)))/80.
a(n) = 4*a(n-1) - 4*a(n-2) - 4*a(n-3) + 10*a(n-4) - 4*a(n-5) - 4*a(n-6) + 4*a(n-7) - a(n-8) for n > 7.
a(2*n-1) = n*A053755(n)/5 for n > 0.
a(2*n) = n*A005408(n)*A059722(n-1)/5.
a(2*n+1) - a(2*n-1) = A001844(n)^2 = A007204(n) for n > 0.
a(2*n) - a(2*n-2) = 2*A000290(n)*A058331(n) for n > 0.

A272850 a(n) = (n^2 + (n+1)^2)*(n^2 + (n+1)^2 + 2*n*(n+1)).

Original entry on oeis.org

1, 45, 325, 1225, 3321, 7381, 14365, 25425, 41905, 65341, 97461, 140185, 195625, 266085, 354061, 462241, 593505, 750925, 937765, 1157481, 1413721, 1710325, 2051325, 2440945, 2883601, 3383901, 3946645, 4576825, 5279625
Offset: 0

Views

Author

Matthew Badley, May 07 2016

Keywords

Comments

Larger of pair of integers whose Pythagorean means are all integers.
The smaller of the pairs are: (A001844).
The arithmetic means are: (A007204)
The geometric means are: (A005917)
The harmonic means are: (A016754).
Subtracting terms in A016754 from A007204 gives complementary harmonics (A060300).

Crossrefs

Programs

Formula

a(n) = (2*n^2 + 2*n + 1)*(4*n^2 + 4*n + 1).
From Colin Barker, May 24 2016: (Start)
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>4.
G.f.: (1 + 40*x + 110*x^2 + 40*x^3 + x^4) / (1-x)^5. (End)
Showing 1-10 of 10 results.