cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A007204 Crystal ball sequence for D_4 lattice.

Original entry on oeis.org

1, 25, 169, 625, 1681, 3721, 7225, 12769, 21025, 32761, 48841, 70225, 97969, 133225, 177241, 231361, 297025, 375769, 469225, 579121, 707281, 855625, 1026169, 1221025, 1442401, 1692601, 1974025, 2289169, 2640625, 3031081, 3463321, 3940225, 4464769, 5040025
Offset: 0

Views

Author

N. J. A. Sloane and J. H. Conway, Apr 28 1994

Keywords

Comments

Equals binomial transform of [1, 24, 120, 192, 96, 0, 0, 0, ...]. - Gary W. Adamson, Aug 13 2009
Hypotenuse of Pythagorean triangles with hypotenuse a square: A057769(n)^2 + A069074(n-1)^2 = a(n)^2. - Martin Renner, Nov 12 2011
Numbers n such that n*x^4 + x^2 + 1 is reducible. - Arkadiusz Wesolowski, Nov 04 2013

References

  • Albert H. Beiler, Recreations in the theory of numbers, New York: Dover, (2nd ed.) 1966, p. 106, table 53.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [(2*n^2+2*n+1)^2: n in [0..40]]; // Vincenzo Librandi, Nov 18 2016
    
  • Maple
    A007204:=n->(2*n^2+2*n+1)^2; seq(A007204(n), n=0..30);
  • Mathematica
    Table[(2n^2+2n+1)^2,{n,0,30}] (* or *) LinearRecurrence[{5,-10,10,-5,1},{1,25,169,625,1681},40] (* Harvey P. Dale, Mar 03 2013 *)
  • PARI
    a(n)=(2*n^2+2*n+1)^2 \\ Charles R Greathouse IV, Feb 08 2017

Formula

G.f.: (1 + 54*x^2 + 20*x + 20*x^3 + x^4)/(1-x)^5.
a(0)=1, a(1)=25, a(2)=169, a(3)=625, a(4)=1681, a(n)=5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Harvey P. Dale, Mar 03 2013
Sum_{n>=0} 1/a(n) = Pi*(sinh(Pi) - Pi)/(2*(cosh(Pi) + 1)) = 1.0487582722070177... - Ilya Gutkovskiy, Nov 18 2016
a(n) = A016754(n) + A060300(n). - Bruce J. Nicholson, Apr 14 2017
a(n) = A001844(n)^2 = (2*n^2+2*n+1)^2. - Bruce J. Nicholson, May 15 2017
a(n) = A000583(n+1) + A099761(n) + 2*A005563(n-1)*A000290(n). - Charlie Marion, Jan 14 2021
E.g.f.: exp(x)*(1 + 24*x + 60*x^2 + 32*x^3 + 4*x^4). - Stefano Spezia, Jun 06 2021

Extensions

More terms from Harvey P. Dale, Mar 03 2013

A069074 a(n) = (2*n+2)*(2*n+3)*(2*n+4) = 24*A000330(n+1).

Original entry on oeis.org

24, 120, 336, 720, 1320, 2184, 3360, 4896, 6840, 9240, 12144, 15600, 19656, 24360, 29760, 35904, 42840, 50616, 59280, 68880, 79464, 91080, 103776, 117600, 132600, 148824, 166320, 185136, 205320, 226920, 249984, 274560, 300696, 328440, 357840
Offset: 0

Views

Author

Benoit Cloitre, Apr 05 2002

Keywords

Comments

sqrt((Sum_{k=0..n} 2*a(k)) + 1) = A056220(n+2). - Doug Bell, Mar 09 2009
Second leg of Pythagorean triangles with hypotenuse a square: A057769(n)^2 + a(n-1)^2 = A007204(n)^2. - Martin Renner, Nov 12 2011
Numbers which are both the sum of 2*n + 4 consecutive odd integers and the sum of the 2*n + 2 immediately higher consecutive odd integers. In general, let f(k,n) = 3*k^3*A000330(n). Then f(k,n) is both the sum of k*n + k consecutive terms from the arithmetic progression with first term A000217(k) and constant difference k and the immediately higher k*n terms from the same progression. When k = 1, f(k,n) = A059270(n). - Charlie Marion, Aug 23 2021

References

  • Albert H. Beiler, Recreations in the theory of numbers, New York: Dover, (2nd ed.) 1966, p. 106, table 53.
  • T. J. I'a. Bromwich, Introduction to the Theory of Infinite Series, Macmillan, 2nd. ed. 1949, p. 190.
  • Jolley, Summation of Series, Dover (1961).
  • Konrad Knopp, Theory and application of infinite series, Dover, p. 269

Crossrefs

Cf. A001844. A001844(n+1)^2 - a(n) and A001844(n+1)^2 + a(n) are both square numbers. - Doug Bell, Mar 08 2009
Cf. A000466. a(n) = Sum_{k=0..2n+3} (A000466(n+1) + 2k) which is the sum of 2n+4 consecutive odd integers starting at A000466(n+1). - Doug Bell, Mar 08 2009

Programs

Formula

Sum_{n>=0} (-1)^n/a(n) = (Pi-3)/4 = 0.03539816339... [Jolley, eq. 244]
Sum_{n>=0} 1/a(n) = 3/4 - log(2) = 0.05685281... [Jolley, eq. 249]
G.f.: ( 24+24*x ) / (x-1)^4. - R. J. Mathar, Oct 03 2011

A075972 Positions of check bits in code in A075970.

Original entry on oeis.org

131071, 33423871, 505290271, 1717986919, 2863311531, 3579139413, 5055419121, 10094819116, 22645810751, 41800423686, 78201007705, 120750351308, 163539395911, 320531740310
Offset: 0

Views

Author

Bob Jenkins (bob_jenkins(AT)burtleburtle.net)

Keywords

References

  • J. H. Conway and N. J. A. Sloane, Lexicographic codes: error-correcting codes from game theory, IEEE Transactions on Information Theory, 32:337-348, 1986.

Crossrefs

A086302 a(n) = 4*n^4 + 24*n^3 + 48*n^2 + 36*n + 8.

Original entry on oeis.org

8, 120, 528, 1520, 3480, 6888, 12320, 20448, 32040, 47960, 69168, 96720, 131768, 175560, 229440, 294848, 373320, 466488, 576080, 703920, 851928, 1022120, 1216608, 1437600, 1687400, 1968408, 2283120, 2634128, 3024120, 3455880, 3932288, 4456320, 5031048
Offset: 0

Views

Author

Neven Juric (neven.juric(AT)apis-it.hr), Aug 29 2003

Keywords

Comments

Suppose one wishes to find sets of four positive integers (a,b,c,d) such that ab+1, ac+1, ad+1, bc+1, bd+1, cd+1 are perfect squares. Then one may take a = 1, b = x^2 + 2x, c = x^2 + 4x + 3, d = 4x^4 + 24x^3 + 48x^2 + 36x + 8.

Examples

			(a,b,c,d) = (1,3,8,120), (1,8,15,528), (1,15,24,1520), (1,24,35,3480), ...
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{5, -10, 10, -5, 1}, {8, 120, 528, 1520, 3480}, 50] (* or *)
    A086302[n_] := 4 (n + 1) (n + 2) (n^2 + 3 n + 1);
    Array[A086302, 50, 0] (* Paolo Xausa, Jan 16 2024 *)

Formula

a(n) = A057769(n+1) + 1. - N. J. A. Sloane, Jun 12 2004
G.f.: 8*(1 + 10*x + x^2)/(1 - x)^5. - Colin Barker, Mar 26 2012
a(n) = 4 * (n+1) * (n+2) * (n^2 + 3*n + 1). - Bruno Berselli, Mar 26 2012
a(n) = 8*A062392(n+1). - Bruce J. Nicholson, Jun 05 2017
Sum_{n>=0} 1/a(n) = tan(sqrt(5)*Pi/2)*Pi/(4*sqrt(5)). - Amiram Eldar, Jan 22 2024
E.g.f.: 4*exp(x)*(2 + 28*x + 37*x^2 + 12*x^3 + x^4). - Stefano Spezia, Apr 27 2025
Showing 1-4 of 4 results.