A007204
Crystal ball sequence for D_4 lattice.
Original entry on oeis.org
1, 25, 169, 625, 1681, 3721, 7225, 12769, 21025, 32761, 48841, 70225, 97969, 133225, 177241, 231361, 297025, 375769, 469225, 579121, 707281, 855625, 1026169, 1221025, 1442401, 1692601, 1974025, 2289169, 2640625, 3031081, 3463321, 3940225, 4464769, 5040025
Offset: 0
- Albert H. Beiler, Recreations in the theory of numbers, New York: Dover, (2nd ed.) 1966, p. 106, table 53.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..1000
- J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
- Index entries for crystal ball sequences
- Index entries for sequences related to D_4 lattice
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
-
[(2*n^2+2*n+1)^2: n in [0..40]]; // Vincenzo Librandi, Nov 18 2016
-
A007204:=n->(2*n^2+2*n+1)^2; seq(A007204(n), n=0..30);
-
Table[(2n^2+2n+1)^2,{n,0,30}] (* or *) LinearRecurrence[{5,-10,10,-5,1},{1,25,169,625,1681},40] (* Harvey P. Dale, Mar 03 2013 *)
-
a(n)=(2*n^2+2*n+1)^2 \\ Charles R Greathouse IV, Feb 08 2017
A069074
a(n) = (2*n+2)*(2*n+3)*(2*n+4) = 24*A000330(n+1).
Original entry on oeis.org
24, 120, 336, 720, 1320, 2184, 3360, 4896, 6840, 9240, 12144, 15600, 19656, 24360, 29760, 35904, 42840, 50616, 59280, 68880, 79464, 91080, 103776, 117600, 132600, 148824, 166320, 185136, 205320, 226920, 249984, 274560, 300696, 328440, 357840
Offset: 0
- Albert H. Beiler, Recreations in the theory of numbers, New York: Dover, (2nd ed.) 1966, p. 106, table 53.
- T. J. I'a. Bromwich, Introduction to the Theory of Infinite Series, Macmillan, 2nd. ed. 1949, p. 190.
- Jolley, Summation of Series, Dover (1961).
- Konrad Knopp, Theory and application of infinite series, Dover, p. 269
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Konrad Knopp, Theorie und Anwendung der unendlichen Reihen, Berlin, J. Springer, 1922. (Original german edition of "Theory and Application of Infinite Series")
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Cf.
A000466. a(n) = Sum_{k=0..2n+3} (
A000466(n+1) + 2k) which is the sum of 2n+4 consecutive odd integers starting at
A000466(n+1). -
Doug Bell, Mar 08 2009
-
[(2*n+2)*(2*n+3)*(2*n+4): n in [0..40]]; // Vincenzo Librandi, Oct 04 2011
-
LinearRecurrence[{4,-6,4,-1},{24,120,336,720},40] (* Harvey P. Dale, Apr 10 2017 *)
-
a(n)=6*binomial(2*n+4,3) \\ Charles R Greathouse IV, Mar 21 2015
A075972
Positions of check bits in code in A075970.
Original entry on oeis.org
131071, 33423871, 505290271, 1717986919, 2863311531, 3579139413, 5055419121, 10094819116, 22645810751, 41800423686, 78201007705, 120750351308, 163539395911, 320531740310
Offset: 0
Bob Jenkins (bob_jenkins(AT)burtleburtle.net)
- J. H. Conway and N. J. A. Sloane, Lexicographic codes: error-correcting codes from game theory, IEEE Transactions on Information Theory, 32:337-348, 1986.
A086302
a(n) = 4*n^4 + 24*n^3 + 48*n^2 + 36*n + 8.
Original entry on oeis.org
8, 120, 528, 1520, 3480, 6888, 12320, 20448, 32040, 47960, 69168, 96720, 131768, 175560, 229440, 294848, 373320, 466488, 576080, 703920, 851928, 1022120, 1216608, 1437600, 1687400, 1968408, 2283120, 2634128, 3024120, 3455880, 3932288, 4456320, 5031048
Offset: 0
Neven Juric (neven.juric(AT)apis-it.hr), Aug 29 2003
(a,b,c,d) = (1,3,8,120), (1,8,15,528), (1,15,24,1520), (1,24,35,3480), ...
- Paolo Xausa, Table of n, a(n) for n = 0..10000
- Philip Gibbs, Diophantine quadruples and Cayley's hyperdeterminant, arXiv:math/0107203 [math.NT], 2001.
- Eric Weisstein's World of Mathematics, Diophantus Property.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
-
LinearRecurrence[{5, -10, 10, -5, 1}, {8, 120, 528, 1520, 3480}, 50] (* or *)
A086302[n_] := 4 (n + 1) (n + 2) (n^2 + 3 n + 1);
Array[A086302, 50, 0] (* Paolo Xausa, Jan 16 2024 *)
Showing 1-4 of 4 results.
Comments