cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A160372 The 4-tuple (2, ((2*n+1)^2-1)/2, ((2*n+3)^2-1)/2, a(n)), where a(n) = 4*(3 + 20n + 42n^2 + 32n^3 + 8n^4), has Diophantus's property that the product of any two distinct terms plus one is a square.

Original entry on oeis.org

420, 2380, 7812, 19404, 40612, 75660, 129540, 208012, 317604, 465612, 660100, 909900, 1224612, 1614604, 2091012, 2665740, 3351460, 4161612, 5110404, 6212812, 7484580, 8942220, 10603012, 12485004, 14607012, 16988620, 19650180, 22612812, 25898404, 29529612, 33529860
Offset: 1

Views

Author

John W. Layman, May 11 2009

Keywords

Examples

			For n=2, we get (2,12,24,2380), and 2*12+1 = 25 = 5^2, 2*24+1 = 49 = 7^2, 2*2380+1 = 4761 = 69^2, 12*24+1 = 289 = 17^2, 12*2380+1 = 28561 = 169^2, 4*2380+1 = 57121 = 239^2.
		

Crossrefs

Cf. A086302.

Programs

Formula

G.f.: 4*x*(3*x^4-14*x^3+28*x^2+70*x+105)/(1-x)^5. - Maksym Voznyy (voznyy(AT)mail.ru), Jul 26 2009 [corrected by R. J. Mathar, Sep 16 2009]
a(n) = 4 * (2*n + 1) * (2*n + 3) * (2*n^2 + 4*n + 1). - Paolo Xausa, Jan 16 2024
From Amiram Eldar, Jan 22 2024: (Start)
Sum_{n>=1} 1/a(n) = -cot(Pi/sqrt(2))*Pi/(8*sqrt(2)) - 5/24.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/8 - cosec(Pi/sqrt(2))*Pi/(8*sqrt(2)) - 1/24. (End)

A176097 Degree of the hyperdeterminant of the cubic format (k+1) X (k+1) X (k+1).

Original entry on oeis.org

1, 4, 36, 272, 2150, 16992, 134848, 1072192, 8536914, 68036600, 542607560, 4329671040, 34561892560, 275979195520, 2204266118400, 17609217372416, 140698273234634, 1124340854572296, 8985828520591912, 71822662173752800
Offset: 0

Views

Author

Benjamin J. Young, Apr 08 2010

Keywords

Examples

			For k=1, the hyperdeterminant of the matrix (a_ijk) (for 0 <= i,j,k <= 1) is (a_000 * a_111)^2 + (a001 * a110)^2 + (a_010 * a_101)^2 + (a_011 * a_100)^2 -2(a_000 * a_001 * a_110 * a_111 + a_000 * a_010 * a_101 * a_111 + a_000 * a_011 * a_100 * a_111 + a_001 * a_010 * a_101 * a_110 + a_001 * a_011 * a_110 * a_100 + a_010 * a_011 * a_101 * a_100) + 4(a_000 * a_011 * a_101 * a_110 + a_001 * a_010 * a_100 * a_111) (see Gelfand, Kapranov & Zelevinsky, pp. 2 and 448.) [Corrected by _Petros Hadjicostas_, Sep 12 2019]
		

References

  • I. M. Gelfand, M. M. Kapranov and A. V. Zelevinsky, Discriminants, Resultants and Multidimensional Determinants, Birkhauser, 2008, p. 456 (Ch. 14, Corollary 2.9).

Crossrefs

Programs

  • Maple
    a:= k-> add((j+k+1)! /(j!)^3 /(k-2*j)! *2^(k-2*j), j=0..floor(k/2)): seq(a(n), n=0..20);
    # Second program:
    a := proc(n) option remember; if n = 0 then return 1 elif n = 1 then return 4 fi;
    (a(n-1)*(21*n^3-10*n^2-9*n+6)+a(n-2)*(24*n^3+16*n^2))/((3*n-1)*n^2) end:
    seq(a(n), n=0..19); # Peter Luschny, Sep 12 2019
  • Mathematica
    Table[Sum[(j + n + 1)!*2^(n - 2*j)/(j!^3*(n - 2*j)!), {j, 0, n/2}], {n, 0, 20}] (* Vaclav Kotesovec, Sep 12 2019 *)

Formula

a(n) = Sum_{j = 0..n/2} ( (j+n+1)! * 2^(n-2j) )/((j!)^3 * (n-2j)!).
a(n) = (n+1)^2*(8*A000172(n)-A000172(n+1))/6. - Mark van Hoeij, Jul 02 2010
G.f.: hypergeom([-1/3, 1/3],[1],27*x^2/(1-2*x)^3)*(1-2*x)/((x+1)^2*(1-8*x)). - Mark van Hoeij, Apr 11 2014
a(n) ~ 8^(n+1) / (Pi * 3^(3/2)). - Vaclav Kotesovec, Sep 12 2019
a(n) = (a(n-1)*(21*n^3 - 10*n^2 - 9*n + 6) + a(n-2)*(24*n^3 + 16*n^2))/((3*n - 1)*n^2) for n >= 2. - Peter Luschny, Sep 12 2019

A160451 a(n) = (4/3)*u*(u^3+6*u^2+8*u-3) where u=floor((3*n+5)/2).

Original entry on oeis.org

1008, 2080, 6440, 10208, 22360, 31416, 57408, 75208, 122816, 153680, 232408, 281520, 402600, 476008, 652400, 757016, 1003408, 1147008, 1479816, 1671040, 2108408, 2356760, 2918560, 3234408, 3942240, 4336816, 5214008, 5699408, 6771016, 7360200, 8653008, 9359800
Offset: 1

Views

Author

John W. Layman, May 14 2009

Keywords

Comments

It appears that the 4-tuple (3, (u^2-1)/3, (floor((3*n+11)/2)^2-1)/3, a(n)) has the Diophantus' property that the product of any two distinct terms plus one is a square.

Examples

			For n=1 we get the 4-tuple (3,5,16,1008), and 3*5+1=16=4^2, 3*16+1=49=7^2, 3*1008+1=3025=55^2, 5*16+1=81=9^2, 5*1008+1=5041=71^2, 16*1008+1=16129=127^2.
		

Crossrefs

Programs

  • Mathematica
    Table[u=Floor[(3n+5)/2];4/3 u(u^3+6u^2+8u-3),{n,30}] (* or *) LinearRecurrence[{1,4,-4,-6,6,4,-4,-1,1},{1008,2080,6440,10208,22360,31416,57408,75208,122816},30] (* Harvey P. Dale, Nov 19 2013 *)

Formula

From R. J. Mathar, May 15 2009: (Start)
a(n) = a(n-1)+4*a(n-2)-4*a(n-3)-6*a(n-4)+6*a(n-5)+4*a(n-6)-4*a(n-7)-a(n-8)+a(n-9).
G.f.: -8*x*(126+134*x+41*x^2-65*x^3+95*x^4+52*x^5-61*x^6-13*x^7+15*x^8)/((1+x)^4*(x-1)^5). (End)
Showing 1-3 of 3 results.