cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A160451 a(n) = (4/3)*u*(u^3+6*u^2+8*u-3) where u=floor((3*n+5)/2).

Original entry on oeis.org

1008, 2080, 6440, 10208, 22360, 31416, 57408, 75208, 122816, 153680, 232408, 281520, 402600, 476008, 652400, 757016, 1003408, 1147008, 1479816, 1671040, 2108408, 2356760, 2918560, 3234408, 3942240, 4336816, 5214008, 5699408, 6771016, 7360200, 8653008, 9359800
Offset: 1

Views

Author

John W. Layman, May 14 2009

Keywords

Comments

It appears that the 4-tuple (3, (u^2-1)/3, (floor((3*n+11)/2)^2-1)/3, a(n)) has the Diophantus' property that the product of any two distinct terms plus one is a square.

Examples

			For n=1 we get the 4-tuple (3,5,16,1008), and 3*5+1=16=4^2, 3*16+1=49=7^2, 3*1008+1=3025=55^2, 5*16+1=81=9^2, 5*1008+1=5041=71^2, 16*1008+1=16129=127^2.
		

Crossrefs

Programs

  • Mathematica
    Table[u=Floor[(3n+5)/2];4/3 u(u^3+6u^2+8u-3),{n,30}] (* or *) LinearRecurrence[{1,4,-4,-6,6,4,-4,-1,1},{1008,2080,6440,10208,22360,31416,57408,75208,122816},30] (* Harvey P. Dale, Nov 19 2013 *)

Formula

From R. J. Mathar, May 15 2009: (Start)
a(n) = a(n-1)+4*a(n-2)-4*a(n-3)-6*a(n-4)+6*a(n-5)+4*a(n-6)-4*a(n-7)-a(n-8)+a(n-9).
G.f.: -8*x*(126+134*x+41*x^2-65*x^3+95*x^4+52*x^5-61*x^6-13*x^7+15*x^8)/((1+x)^4*(x-1)^5). (End)
Showing 1-1 of 1 results.