A234335 Numbers k such that distances from k to three nearest squares are three perfect squares.
0, 5, 65, 160, 325, 1025, 2501, 5185, 5525, 7200, 9605, 16385, 26245, 40001, 40885, 58565, 82945, 93925, 97920, 114245, 153665, 160225, 187200, 202501, 204425, 219385, 262145, 334085, 419905, 430625, 521285, 640001, 707200, 777925, 781625, 869465, 937025, 972725
Offset: 1
Keywords
Examples
5 is in the sequence because the following three are perfect squares: 5-4=1, 5-1=4, 9-5=4. 65 is in the sequence because the following three are perfect squares: 65-64=1, 65-49=16, 81-65=16, where 49, 64, 81 are the three squares nearest to 65.
Programs
-
C
#include
#include typedef unsigned long long U64; U64 isSquare(U64 a) { U64 r = sqrt(a); return r*r==a; } int main() { for (U64 n=0; ; ++n) { U64 r = sqrt(n); if (r*r==n && n) --r; if (isSquare(n-r*r) && isSquare((r+1)*(r+1)-n)) { U64 rp = (r+2)*(r+2)-n; r = n-(r-1)*(r-1); if (n<=1 || rp -
Mathematica
ps3Q[n_]:=AllTrue[Take[Sort[Abs[n-(Floor[Sqrt[n]]+{-2,-1,0,1,2})^2]],3],IntegerQ[Sqrt[#]]&]; Join[ {0},Select[Range[2,10^6],ps3Q]] (* Harvey P. Dale, Jul 03 2024 *)
Comments