A006010 Number of paraffins (see Losanitsch reference for precise definition).
1, 5, 20, 52, 117, 225, 400, 656, 1025, 1525, 2196, 3060, 4165, 5537, 7232, 9280, 11745, 14661, 18100, 22100, 26741, 32065, 38160, 45072, 52897, 61685, 71540, 82516, 94725, 108225, 123136, 139520, 157505, 177157, 198612, 221940, 247285, 274721, 304400
Offset: 1
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Nicolay Avilov, Illustration of a(1)-a(6)
- Nicolay Avilov, The problem of a broken line in a square (in Russian).
- S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926.
- S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926. (Annotated scanned copy)
- Index entries for linear recurrences with constant coefficients, signature (3,-1,-5,5,1,-3,1).
Crossrefs
Programs
-
Mathematica
CoefficientList[Series[-(x^4 + 2 x^3 + 6 x^2 + 2 x + 1)/((x - 1)^5 (x + 1)^2), {x, 0, 40}], x] (* Vincenzo Librandi, Oct 14 2013 *) LinearRecurrence[{3,-1,-5,5,1,-3,1},{1,5,20,52,117,225,400},40] (* Harvey P. Dale, Dec 13 2018 *)
-
PARI
Vec(-x*(x^4+2*x^3+6*x^2+2*x+1)/((x-1)^5*(x+1)^2) + O(x^100)) \\ Colin Barker, Oct 05 2015
Formula
Sum of [ 1, 3, 9, ... ](A005994) + [ 0, 0, 1, 3, 9, ... ] + 2*[ 0, 1, 5, 15, 35, ... ](binomial(n, 4)).
If n is odd then a(n) = (1/8) * (n^4 + 2*n^3 + 2*n^2 + 2*n + 1) = Det(Transpose[M]*M) where M is the 2 X 3 matrix whose rows are [(n-1)/2, (n-1)/2], [(n-1)/2 + 1, 0] and [(n-1)/2 + 1, (n-1)/2 + 1]. If n is even then a(n) = (1/8) * (n^4 + 2*n^3 + 2*n^2) = Det(Transpose[M]*M) where M is the 2 X 3 matrix whose rows are [n/2, 0], [n/2, n/2] and [n/2 + 1, 0]. - Gerald McGarvey, Oct 30 2007
G.f.: -x*(x^4+2*x^3+6*x^2+2*x+1) / ((x-1)^5*(x+1)^2). - Colin Barker, Mar 20 2013
E.g.f.: (x*(7 + 15*x + 8*x^2 + x^3)*cosh(x) + (1 + 5*x + 15*x^2 + 8*x^3 + x^4)*sinh(x))/8. - Stefano Spezia, Jul 08 2020
Extensions
More terms from David W. Wilson
Comments