A382973 a(n) = 4*n^3 - 6*n^2 + 6*n - 2 + (-1)^n.
1, 19, 69, 183, 377, 683, 1117, 1711, 2481, 3459, 4661, 6119, 7849, 9883, 12237, 14943, 18017, 21491, 25381, 29719, 34521, 39819, 45629, 51983, 58897, 66403, 74517, 83271, 92681, 102779, 113581, 125119, 137409, 150483, 164357, 179063, 194617, 211051, 228381, 246639
Offset: 1
Examples
a(2) = 3^3 - 8*1 = 19; a(3) = 5^3 - 8*7 = 69.
Links
- Nicolay Avilov, Illustration of a cube coloring.
- Index entries for linear recurrences with constant coefficients, signature (3,-2,-2,3,-1).
Programs
-
Mathematica
LinearRecurrence[{3, -2, -2, 3, -1}, {1, 19, 69, 183, 377}, 20] (* Hugo Pfoertner, Jun 12 2025 *)
Formula
a(n) = (2n - 1)^3 - 8*A011934(n-1).
G.f.: x*(1 + 16*x + 14*x^2 + 16*x^3 + x^4)/((1 - x)^4*(1 + x)). - Stefano Spezia, Jun 12 2025
Comments